Skip to main content

概述

SSCMA 目前支持以下模型。您可以参考相应的教程来完成模型的训练并获得模型权重。

tip

在开始训练之前,我们建议您先阅读配置数据集部分。

参数说明

有关模型训练期间的更多参数,您可以参考以下代码。

python3 tools/train.py --help

# Train SSCMA models

# positional arguments:
# config the model config file path

# optional arguments:
# -h, --help show this help message and exit
# --work_dir WORK_DIR, --work-dir WORK_DIR
# the directory to save logs and models
# --amp enable automatic-mixed-precision during training (https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html)
# --auto_scale_lr, --auto-scale-lr
# enable automatic-scale-LR during training
# --resume [RESUME] resume training from the checkpoint of the last epoch (or a specified checkpoint path)
# --no_validate, --no-validate
# disable checkpoint evaluation during training
# --launcher {none,pytorch,slurm,mpi}
# the job launcher for MMEngine
# --cfg_options CFG_OPTIONS [CFG_OPTIONS ...], --cfg-options CFG_OPTIONS [CFG_OPTIONS ...]
# override some settings in the used config, the key-value pair in 'xxx=yyy' format will be merged into config file
# --local_rank LOCAL_RANK, --local-rank LOCAL_RANK
# set local-rank for PyTorch
# --dynamo_cache_size DYNAMO_CACHE_SIZE, --dynamo-cache-size DYNAMO_CACHE_SIZE
# set dynamo-cache-size limit for PyTorch
# --input_shape INPUT_SHAPE [INPUT_SHAPE ...], --input-shape INPUT_SHAPE [INPUT_SHAPE ...]
# Extension: input data shape for model parameters estimation, e.g. 1 3 224 224

部署

导出模型后,您可以将模型部署到边缘计算设备上进行测试和评估。您可以参考部署部分了解更多关于如何部署模型的信息。

Loading Comments...