通过 XIAO ESP32-S3 控制 reSpeaker XVF3800 GPIO
通过 XIAO ESP32-S3 控制 reSpeaker XVF3800 GPIO
目标
本指南说明如何使用 I2C 接口读取和控制 XVF3800 语音处理器上的 GPIO 引脚。您将学习如何:
- 读取 GPI 和 GPO 引脚状态
- 控制输出引脚(例如,静音麦克风、控制 LED、放大器)
- 了解 GPIO 映射及其用途
GPIO 概述
reSpeaker XVF3800 提供 3 个输入引脚 (GPI) 和 5 个输出引脚 (GPO) 用于外部控制。您可以使用这些引脚读取按钮状态或控制硬件,如静音 LED、放大器或 LED。
引脚名称 | 方向 | 功能 |
---|---|---|
X1D09 | 输入 (RO) | 静音按钮状态(释放时为高电平) |
X1D13 | 输入 (RO) | 浮空 |
X1D34 | 输入 (RO) | 浮空 |
X0D11 | 输出 (RW) | 浮空 |
X0D30 | 输出 (RW) | 静音 LED + 麦克风静音控制(高电平 = 静音) |
X0D31 | 输出 (RW) | 放大器使能(低电平 = 使能) |
X0D33 | 输出 (RW) | WS2812 LED 电源控制(高电平 = 开启) |
X0D39 | 输出 (RW) | 浮空 |
读取 GPO 引脚状态
目标:检查所有输出功能 GPIO (GPO) 的逻辑电平。 代码要点:
- 使用以下参数发送读取请求:
- 资源 ID:20 (GPO)
- 命令 ID:0 (GPO_READ_VALUES)
- 按顺序读取 5 个 GPO 引脚状态:X0D11 → X0D30 → X0D31 → X0D33 → X0D39
- 包含状态字节以验证响应
#include <Wire.h>
#define XMOS_ADDR 0x2C // I2C 7-bit address
#define GPO_SERVICER_RESID 20
#define GPO_SERVICER_RESID_GPO_READ_VALUES 0
#define GPO_GPO_READ_NUM_BYTES 5
void setup() {
Serial.begin(115200);
while (!Serial);
Wire.begin();
delay(1000);
Serial.println("XVF3800 GPO Read Test Starting...");
}
void loop() {
uint8_t gpo_values[GPO_GPO_READ_NUM_BYTES] = {0};
uint8_t status = 0xFF;
bool success = read_gpo_values(gpo_values, &status);
if (success) {
Serial.print("I2C Communication SUCCESS. Status byte: 0x");
Serial.print(status, HEX);
Serial.print(" | GPO Output Values: ");
for (uint8_t i = 0; i < GPO_GPO_READ_NUM_BYTES; i++) {
Serial.print("0x");
Serial.print(gpo_values[i], HEX);
Serial.print(" ");
}
Serial.println();
} else {
Serial.println("Failed to read GPO values.");
}
delay(1000);
}
bool read_gpo_values(uint8_t *buffer, uint8_t *status) {
const uint8_t resid = GPO_SERVICER_RESID;
const uint8_t cmd = GPO_SERVICER_RESID_GPO_READ_VALUES | 0x80;
const uint8_t read_len = GPO_GPO_READ_NUM_BYTES;
// Step 1: Write command
Wire.beginTransmission(XMOS_ADDR);
Wire.write(resid);
Wire.write(cmd);
Wire.write(read_len + 1);
uint8_t result = Wire.endTransmission();
if (result != 0) {
Serial.print("I2C Write Error: ");
Serial.println(result);
return false;
}
// Step 2: Read response (status + payload)
Wire.requestFrom(XMOS_ADDR, (uint8_t)(read_len + 1));
if (Wire.available() < read_len + 1) {
Serial.println("I2C Read Error: Not enough data received.");
return false;
}
*status = Wire.read();
for (uint8_t i = 0; i < read_len; i++) {
buffer[i] = Wire.read();
}
return true;
}
读取 GPI 引脚状态
目标:检查支持输入的 GPIO 的状态(例如,静音按钮状态)。 代码要点:
- 发送命令到:
- 资源 ID:36 (IO_CONFIG)
- 命令 ID:6 (GPI_VALUE_ALL)
- 接收 3 个 GPI,表示 X1D09、X1D13 和 X1D34 的状态
#include <Wire.h>
#define XMOS_ADDR 0x2C // I2C 7-bit address of XVF3800
// Resource and command IDs for GPI
#define IO_CONFIG_SERVICER_RESID 36
#define IO_CONFIG_SERVICER_RESID_GPI_READ_VALUES 0
#define GPI_READ_NUM_BYTES 3 // From header: IO_CONFIG_SERVICER_RESID_GPI_READ_VALUES_NUM_VALUES
void setup() {
Serial.begin(115200);
while (!Serial);
Wire.begin();
delay(1000);
Serial.println("XVF3800 GPI Read Test Starting...");
}
void loop() {
uint8_t gpi_values[GPI_READ_NUM_BYTES] = {0};
uint8_t status = 0xFF;
bool success = read_gpi_values(gpi_values, &status);
if (success) {
Serial.print("I2C Communication SUCCESS. Status byte: 0x");
Serial.print(status, HEX);
Serial.print(" | GPI Input Values: ");
for (uint8_t i = 0; i < GPI_READ_NUM_BYTES; i++) {
Serial.print("0x");
Serial.print(gpi_values[i], HEX);
Serial.print(" ");
}
Serial.println();
} else {
Serial.println("Failed to read GPI values.");
}
delay(1000);
}
bool read_gpi_values(uint8_t *buffer, uint8_t *status) {
const uint8_t resid = IO_CONFIG_SERVICER_RESID;
const uint8_t cmd = IO_CONFIG_SERVICER_RESID_GPI_READ_VALUES | 0x80; // Read command
const uint8_t read_len = GPI_READ_NUM_BYTES;
// Step 1: Send the command
Wire.beginTransmission(XMOS_ADDR);
Wire.write(resid);
Wire.write(cmd);
Wire.write(read_len + 1); // +1 for status byte
uint8_t result = Wire.endTransmission();
if (result != 0) {
Serial.print("I2C Write Error: ");
Serial.println(result);
return false;
}
// Step 2: Read response (status + payload)
Wire.requestFrom(XMOS_ADDR, (uint8_t)(read_len + 1));
if (Wire.available() < read_len + 1) {
Serial.println("I2C Read Error: Not enough data received.");
return false;
}
*status = Wire.read(); // first byte is status
for (uint8_t i = 0; i < read_len; i++) {
buffer[i] = Wire.read();
}
return true;
}
写入 GPO 引脚 – 静音麦克风示例
目标:控制输出 GPIO,例如,通过切换 GPIO 30 (X0D30) 来静音麦克风。 代码要点:
- 发送写入命令到:
- 资源 ID:20
- 命令 ID:1 (GPO_WRITE_VALUE)
- 载荷:引脚编号,值
例如,{30, 1} 来静音
便利函数:
- muteMic() → 设置 GPIO 30 为高电平以静音麦克风并点亮红色 LED
- unmuteMic() → 设置 GPIO 30 为低电平以取消静音麦克风并关闭 LED
#include <Wire.h>
// Define the 7-bit I2C address of the XVF3800 device
#define XMOS_ADDR 0x2C
// Define XVF3800 Resource and Command IDs
#define GPO_SERVICER_RESID 20 // Resource ID for GPIO Output (GPO)
#define GPO_SERVICER_RESID_GPO_WRITE_VALUE 1 // Command ID to write value to GPIO
#define IO_CONFIG_SERVICER_RESID 36 // Resource ID for IO Configuration
#define IO_CONFIG_SERVICER_RESID_GPI_VALUE_ALL 6 // Command ID to read all GPIO input values
void setup() {
Wire.begin(); // Initialize I2C communication
Serial.begin(115200); // Initialize serial communication for debugging
delay(1000); // Short delay to allow device startup
Serial.println("Muting Mic (Setting GPIO 30 HIGH)");
muteMic(); // Set GPIO 30 HIGH to mute microphone
delay(5000); // Wait for 5 seconds
Serial.println("Unmuting Mic (Setting GPIO 30 LOW)");
unmuteMic(); // Set GPIO 30 LOW to unmute microphone
delay(3000); // Wait for 3 seconds
Serial.println("Reading GPIO Status...");
readGPIOStatus(); // Read and print the status of all GPIOs
}
void loop() {
// Empty loop - no repeated actions for now
}
// Function to set GPIO 30 to a specific logic level (0 = LOW, 1 = HIGH)
void setGPIO30(uint8_t level) {
uint8_t payload[2] = {30, level}; // Payload format: [GPIO index, value]
xmos_write_bytes(GPO_SERVICER_RESID, GPO_SERVICER_RESID_GPO_WRITE_VALUE, payload, 2);
Serial.print("Command Sent: GPIO 30 = ");
Serial.println(level);
}
// Convenience function to mute the microphone (set GPIO 30 HIGH)
void muteMic() {
setGPIO30(1); // Logic HIGH to mute
}
// Convenience function to unmute the microphone (set GPIO 30 LOW)
void unmuteMic() {
setGPIO30(0); // Logic LOW to unmute
}
// Function to write a sequence of bytes over I2C to the XVF3800
void xmos_write_bytes(uint8_t resid, uint8_t cmd, uint8_t *value, uint8_t write_byte_num) {
Wire.beginTransmission(XMOS_ADDR); // Begin I2C transmission to XVF3800
Wire.write(resid); // Write the resource ID
Wire.write(cmd); // Write the command ID
Wire.write(write_byte_num); // Write number of payload bytes
for (uint8_t i = 0; i < write_byte_num; i++) {
Wire.write(value[i]); // Write each payload byte
}
Wire.endTransmission(); // End the I2C transmission
}
// Function to read the status of all GPIO inputs (32 bits) from XVF3800
void readGPIOStatus() {
uint8_t buffer[4] = {0}; // Buffer to hold the 4-byte GPIO status response
// --- Write phase: Send read request ---
Wire.beginTransmission(XMOS_ADDR); // Begin I2C write transaction
Wire.write(IO_CONFIG_SERVICER_RESID); // Write the resource ID for IO config
Wire.write(IO_CONFIG_SERVICER_RESID_GPI_VALUE_ALL); // Write the command ID to get all GPIO values
Wire.write(1); // Payload length (1 byte)
Wire.endTransmission(false); // End transmission with repeated start (no stop)
// --- Read phase: Read response from device ---
Wire.requestFrom(XMOS_ADDR, 5); // Request 5 bytes: 1 status byte + 4 data bytes
if (Wire.available() < 5) {
Serial.println("Error: Not enough bytes received from XVF3800.");
return;
}
uint8_t status = Wire.read(); // Read the status byte (should be 0 for success)
// Read the 4-byte GPIO input status value
for (int i = 0; i < 4; i++) {
buffer[i] = Wire.read();
}
// Combine 4 bytes into a single 32-bit unsigned integer
uint32_t gpio_status = ((uint32_t)buffer[3] << 24) |
((uint32_t)buffer[2] << 16) |
((uint32_t)buffer[1] << 8) |
((uint32_t)buffer[0]);
Serial.print("GPIO Status Register = 0x");
Serial.println(gpio_status, HEX);
// Check and print the state of GPIO 30 specifically
bool gpio30 = (gpio_status >> 30) & 0x01;
Serial.print("GPIO 30 State: ");
Serial.println(gpio30 ? "HIGH (Muted)" : "LOW (Unmuted)");
}
技术支持与产品讨论
感谢您选择我们的产品!我们在这里为您提供不同的支持,确保您使用我们产品的体验尽可能顺畅。我们提供多种沟通渠道,以满足不同的偏好和需求。