Skip to main content

XIAO ESP32S3(Sense) 使用 FreeRTOS

note

本文档由 AI 翻译。如您发现内容有误或有改进建议,欢迎通过页面下方的评论区,或在以下 Issue 页面中告诉我们:https://github.com/Seeed-Studio/wiki-documents/issues

本 Wiki 涵盖了 FreeRTOSSeeed Studio XIAO ESP32S3 的支持。通过本指南,您将能够利用该开发板提供的功能集。

什么是 FreeRTOS

pir

FreeRTOS 是一个由实时内核和一组模块化库组成的 C 库集合,这些库实现了互补功能。FreeRTOS 内核是一个实时内核(或实时调度器),使基于 FreeRTOS 构建的应用程序能够满足其严格的实时要求。它使应用程序能够组织为一组独立的执行线程。

参考:掌握 FreeRTOS 实时内核

FreeRTOS 的移植

FreeRTOS 是一个开源的实时操作系统(RTOS)内核,作为组件集成到 ESP-IDF 中。因此,所有 ESP-IDF 应用程序和许多 ESP-IDF 组件都是基于 FreeRTOS 编写的。FreeRTOS 内核已移植到所有 ESP 芯片可用的架构(即 Xtensa 和 RISC-V)。

我们将使用 FreeRTOS 的 ESP-IDF 移植版本。

硬件准备

我使用的是 Seed Studio XIAO ESP32S3 Sense,以及板载摄像头、麦克风和 SD 卡读卡器,同时利用 ESP32S3 的 WiFi 功能。

Seeed Studio XIAO ESP32S3(Sense)

附加组件

软件准备

我使用的是 Visual Studio Code(Windows)和 ESP-IDF。

  1. 安装 VSCode
  2. ESP-IDF 安装指南
  3. Git 仓库
VS CodeVSCode 的 ESP-IDF

入门指南

设置 ESP-IDF

在设置 Visual Studio 扩展 后,打开终端并粘贴以下命令,以便从普通终端环境(VSCode 外部)访问 ESP-IDF 命令行工具。

note

正常安装 ESP-IDF 的 VS-Code 扩展可以满足 90% 的使用场景,仅在需要在环境外使用 ESP 命令行工具时执行以下步骤。

PowerShell(Windows)

.$HOME\esp\v5.3\esp-idf\export.ps1
info

".$HOME\esp\v5.3\esp-idf" 可能因用户而异,这是默认安装路径。
请替换为您设备上的安装路径。

tip

为了避免重复设置,以管理员模式启动 PowerShell 并输入以下命令:

notepad $PSHOME\Profile.ps1

一个记事本实例将打开。将导出 shell 命令粘贴到记事本中并保存。打开一个 PowerShell 实例,它应该显示如下输出:

Done! You can now compile ESP-IDF projects.

如果一切设置正确,以下命令:

idf.py

应该显示如下输出:

Usage: idf.py [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

ESP-IDF CLI build management tool. For commands that are not known to idf.py an attempt to execute it as a build
system target will be made. Selected target: None

什么是任务?

任务是处理器被请求执行的一些小功能/工作,并具有一组设置。任务可以是小型函数,也可以是无限循环的函数。
任务是 ESP-IDF 应用程序中的基本执行单元。它们本质上是与其他任务并发运行的函数。这使得多任务处理和响应更加高效。

什么是任务属性?

由于该主题内容广泛,这里仅介绍本指南中将使用的一些属性。

  • TaskFunction: 这是包含任务实际逻辑的函数。它是任务执行的入口点。
  • StackSize: 指定为任务堆栈分配的内存量。堆栈用于存储局部变量、函数返回地址和临时数据。
  • TaskPriority: 确定任务相对于其他任务的重要性。优先级较高的任务比优先级较低的任务更有可能被优先执行。
  • TaskParameters: 这是可选参数,可以在创建任务时传递给任务函数。它们可用于为任务提供额外的上下文或配置。
  • CoreAffinity: 指定任务应分配到哪个 CPU 核心。在多核系统中,这可以用于优化性能或平衡工作负载。

创建任务

在 FreeRTOS 中,可以使用 xTaskCreate 函数来创建任务。此函数需要多个参数,包括任务函数、任务名称、堆栈大小、参数、优先级以及创建的任务句柄。

TaskHandle_t task;
xTaskCreate(
taskFunction, /* 实现任务的函数。 */
"taskName", /* 任务的文本名称。 */
configMINIMAL_STACK_SIZE, /* 堆栈大小(以字为单位,或以字节为单位)。 */
NULL, /* 传递给任务的参数。 */
tskIDLE_PRIORITY, /* 创建任务时的优先级。 */
&task /* 用于传出创建的任务句柄。 */
);

创建绑定到核心的任务

如果芯片是双核的,可以使用 xTaskCreatePinnedToCore 函数创建任务并将其绑定到特定核心。此函数类似于 xTaskCreate,但多了一个用于指定核心的参数。

TaskHandle_t task;
xTaskCreatePinnedToCore(
taskFunction, /* 实现任务的函数。 */
"taskName", /* 任务的文本名称。 */
configMINIMAL_STACK_SIZE, /* 堆栈大小(以字为单位,或以字节为单位)。 */
NULL, /* 传递给任务的参数。 */
tskIDLE_PRIORITY, /* 创建任务时的优先级。 */
&task, /* 用于传出创建的任务句柄。 */
0); /* 核心 ID */

任务函数调用

任务函数是任务将要执行的实际代码。

void taskFunction(void * pvParameters) {
/*
在这里定义函数
*/
}

任务的可视化

我创建了四个简单的任务来可视化 FreeRTOS 的工作方式。

pir

可视化表示

CPU0
-----
taskFunction1 (1000ms 延迟)

CPU1
-----
taskFunction2 (500ms 延迟)
taskFunction3 (500ms 延迟)
taskFunction4 (500ms 延迟)

代码

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "sdkconfig.h"
#include "esp_log.h"

TaskHandle_t task1,task2,task3,task4;

void taskFunction1(void * pvParameters) {
while (true) {
ESP_LOGI("Task1", "Hello from task 1");
vTaskDelay(pdMS_TO_TICKS(1000)); // 添加延迟以避免输出过多
}
}

void taskFunction2(void * pvParameters) {
while (true) {
ESP_LOGI("Task2", "Hello from task 2");
vTaskDelay(pdMS_TO_TICKS(500)); // 添加延迟以避免输出过多
}
}

void taskFunction3(void * pvParameters) {
while (true) {
ESP_LOGI("Task3", "Hello from task 3");
vTaskDelay(pdMS_TO_TICKS(500)); // 添加延迟以避免输出过多
}
}

void taskFunction4(void * pvParameters) {
while (true) {
ESP_LOGI("Task4", "Hello from task 4");
vTaskDelay(pdMS_TO_TICKS(500)); // 添加延迟以避免输出过多
}
}

void app_main(void) {
xTaskCreatePinnedToCore(
taskFunction1, /* 实现任务的函数。 */
"task_1", /* 任务的文本名称。 */
configMINIMAL_STACK_SIZE, /* 堆栈大小(以字为单位,而非字节)。 */
NULL, /* 传递给任务的参数。 */
tskIDLE_PRIORITY, /* 创建任务时的优先级。 */
&task1, /* 用于传出创建的任务句柄。 */
0); /* 核心 ID */

xTaskCreatePinnedToCore(
taskFunction2, /* 实现任务的函数。 */
"task_2", /* 任务的文本名称。 */
configMINIMAL_STACK_SIZE, /* 堆栈大小(以字为单位,而非字节)。 */
NULL, /* 传递给任务的参数。 */
tskIDLE_PRIORITY, /* 创建任务时的优先级。 */
&task2, /* 用于传出创建的任务句柄。 */
1); /* 核心 ID */

xTaskCreatePinnedToCore(
taskFunction3, /* 实现任务的函数。 */
"task_3", /* 任务的文本名称。 */
configMINIMAL_STACK_SIZE, /* 堆栈大小(以字为单位,而非字节)。 */
NULL, /* 传递给任务的参数。 */
tskIDLE_PRIORITY, /* 创建任务时的优先级。 */
&task3, /* 用于传出创建的任务句柄。 */
1); /* 核心 ID */

xTaskCreatePinnedToCore(
taskFunction4, /* 实现任务的函数。 */
"task_4", /* 任务的文本名称。 */
configMINIMAL_STACK_SIZE, /* 堆栈大小(以字为单位,而非字节)。 */
NULL, /* 传递给任务的参数。 */
tskIDLE_PRIORITY, /* 创建任务时的优先级。 */
&task4, /* 用于传出创建的任务句柄。 */
1); /* 核心 ID */
}
tip

configMINIMAL_STACK_SIZE 可以在 sdkconfig 中更改。

四个任务

  1. 四个任务:代码定义了四个任务:taskFunction1taskFunction2taskFunction3taskFunction4
  2. 任务优先级:所有任务都以 tskIDLE_PRIORITY 创建。这意味着它们具有相同的优先级。
  3. 任务绑定:taskFunction1 绑定到 CPU0,而其他三个任务绑定到 CPU1。
  4. 任务延迟:taskFunction1 的延迟为 1000ms,而其他三个任务的延迟为 500ms。

创建 CPU0 和 CPU1 的任务调度

我创建了一个针对 CPU0 和 CPU1 的基本任务调度。

CPU0 任务调度

任务: taskFunction1
优先级: 空闲 (最低)
延迟: 1000ms
核心: 0

CPU1 任务调度

任务: taskFunction2, taskFunction3, taskFunction4
优先级: 全部为空闲 (相同优先级)
延迟: 每个任务均为 500ms
核心: 1
info

这是一个简化的调度。在实时系统中,实际的任务调度会涉及更复杂的因素,例如任务优先级、截止时间和资源约束。

输出
I (11412) Task1: Hello from task 1
I (11522) Task3: Hello from task 3
I (11522) Task2: Hello from task 2
I (11532) Task4: Hello from task 4
I (12032) Task3: Hello from task 3
I (12032) Task2: Hello from task 2
I (12042) Task4: Hello from task 4
I (12422) Task1: Hello from task 1
I (12542) Task3: Hello from task 3
I (12542) Task2: Hello from task 2
I (12552) Task4: Hello from task 4
I (13052) Task3: Hello from task 3
I (13052) Task2: Hello from task 2
I (13062) Task4: Hello from task 4
I (13432) Task1: Hello from task 1
I (13562) Task3: Hello from task 3
I (13562) Task2: Hello from task 2
I (13572) Task4: Hello from task 4
I (14072) Task3: Hello from task 3
I (14072) Task2: Hello from task 2
I (14082) Task4: Hello from task 4

使用 FreeRTOS 进行传感器轮询

在这里,我使用了一个模拟传感器 Air Quality Sensor v1.3 和 ESP_IDF_v5.3。

硬件设置

将 Xiao-S3 连接到 Grove - 扩展板,并将 Air Quality Sensor v1.3 连接到模拟接口。

pir

软件设置

拉取 Git 仓库后,在 VSCode 中打开文件夹。依次选择 View->Command Palette->ESP-IDF: Add vscode Configuration Folder。 从底部面板选择正确的 COM 端口、芯片 (ESP-S3),然后进行构建、烧录和监控。

代码概览

此代码旨在从传感器收集空气质量数据,处理原始数据以确定空气质量水平,并定期将结果打印到控制台。

关键组件:

  • 传感器初始化:
air_quality_sensor_t air_quality_sensor;

void sensor_setup()
{
air_quality_sensor._io_num = ADC_CHANNEL_0;
air_quality_sensor._adc_num = ADC_UNIT_1;
printf("Starting Air Quality Sensor...\n");
if(!initialize_air_quality_sensor(&air_quality_sensor))
{
printf("Sensor ready.\n");
}
else{
printf("Sensor ERROR!\n");
}
}
  • sensor_setup() 函数配置传感器的 I/O 引脚和 ADC 单元。

  • 它尝试使用 initialize_air_quality_sensor() 初始化传感器。

  • 如果初始化成功,传感器即可准备好进行数据采集。

  • 数据采集任务:

void poll_read_air_quality_sensor(void *pvParameters)
{
for (;;)
{
air_quality_sensor_slope(&air_quality_sensor);
vTaskDelay(500 / portTICK_PERIOD_MS);
}
}
  • poll_read_air_quality_sensor() 任务用于持续读取传感器的原始数据。

  • 它调用 air_quality_sensor_slope() 处理原始数据并计算斜率,斜率是空气质量的一个指标。

  • 任务延迟 500 毫秒后读取下一数据点。

  • 数据打印任务:


void print_read_air_quality_sensor(void *pvParameters)
{
for (;;)
{
char buf[40];
air_quality_error_to_message(air_quality_sensor._air_quality,buf);
printf("Time : %lu\tSlope : %d\tRaw Value : %d\n%s\n", (uint32_t)esp_timer_get_time() / 1000, air_quality_sensor._air_quality, air_quality_sensor._sensor_raw_value,buf);
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
  • print_read_air_quality_sensor() 任务用于定期打印采集的数据和计算的空气质量。
  • 它使用 air_quality_error_to_message() 获取当前时间、斜率、原始值和空气质量消息。
  • 任务以格式化方式将数据打印到控制台。
  • 任务延迟 1000 毫秒后打印下一数据点。

void app_main(void)
{
sensor_setup();
xTaskCreatePinnedToCore(
poll_read_air_quality_sensor, /* 实现任务的函数 */
"poll_read_air_quality_sensor", /* 任务的文本名称 */
configMINIMAL_STACK_SIZE * 2, /* 堆栈大小,以字为单位,而非字节 */
NULL, /* 传递给任务的参数 */
tskIDLE_PRIORITY, /* 创建任务时的优先级 */
NULL, /* 用于传递创建任务的句柄 */
0); /* 核心 ID */

xTaskCreatePinnedToCore(
print_read_air_quality_sensor, /* 实现任务的函数 */
"print_read_air_quality_sensor", /* 任务的文本名称 */
configMINIMAL_STACK_SIZE * 2, /* 堆栈大小,以字为单位,而非字节 */
NULL, /* 传递给任务的参数 */
tskIDLE_PRIORITY + 1, /* 创建任务时的优先级 */
NULL, /* 用于传递创建任务的句柄 */
0); /* 核心 ID */
}

输出

Time : 37207    Slope : 3       Raw Value : 273
新鲜空气。
Time : 38217 Slope : 3 Raw Value : 269
新鲜空气。
Time : 39227 Slope : 3 Raw Value : 274
新鲜空气。
Time : 40237 Slope : 3 Raw Value : 251
新鲜空气。
Time : 41247 Slope : 3 Raw Value : 276
新鲜空气。
Time : 42257 Slope : 3 Raw Value : 250
新鲜空气。
Time : 43267 Slope : 3 Raw Value : 236
新鲜空气。
Time : 44277 Slope : 3 Raw Value : 253
新鲜空气。
Time : 45287 Slope : 3 Raw Value : 245
新鲜空气。
Time : 46297 Slope : 3 Raw Value : 249
新鲜空气。
Time : 47307 Slope : 3 Raw Value : 244
新鲜空气。
Time : 48317 Slope : 3 Raw Value : 235
新鲜空气。
Time : 49327 Slope : 3 Raw Value : 239
新鲜空气。
Time : 50337 Slope : 3 Raw Value : 233
新鲜空气。
Time : 51347 Slope : 3 Raw Value : 235
新鲜空气。

在 FreeRTOS 中使用摄像头和 SdCard

在这里,我使用了板载摄像头和 SdCard,并结合 ESP_IDF_v5.3。

硬件设置

按照 microSD 卡指南摄像头指南 将摄像头和 microSD 卡扩展板连接到主板。

  • 格式化 microSD 卡(支持最大 32Gb)
  • 将 microSD 卡插入扩展板

设置看起来如下所示:

正面背面

软件设置

拉取 Git 仓库后,在 VSCode 中打开文件夹。进入 View->Command Palette->ESP-IDF: Add vscode Configuration Folder。 从底部面板选择正确的 COM 端口、芯片(ESP-S3),然后进行构建、烧录和监控。

摄像头组件

  • 摄像头配置:
    • 定义用于摄像头各种功能的 GPIO 引脚(PWDN、RESET、XCLK、SIOD、SIOC、Y9-Y2、VSYNC、HREF、PCLK、LED)。
    • 设置摄像头参数的默认值(例如时钟频率、帧缓冲区位置、像素格式、帧大小、JPEG 质量、帧缓冲区数量、抓取模式)。
#ifndef CAMERA_CONFIG_H
#define CAMERA_CONFIG_H

#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 10
#define SIOD_GPIO_NUM 40
#define SIOC_GPIO_NUM 39

#define Y9_GPIO_NUM 48
#define Y8_GPIO_NUM 11
#define Y7_GPIO_NUM 12
#define Y6_GPIO_NUM 14
#define Y5_GPIO_NUM 16
#define Y4_GPIO_NUM 18
#define Y3_GPIO_NUM 17
#define Y2_GPIO_NUM 15
#define VSYNC_GPIO_NUM 38
#define HREF_GPIO_NUM 47
#define PCLK_GPIO_NUM 13

#define LED_GPIO_NUM 21

#endif //CAMERA_CONFIG_H
  • 摄像头接口:
    声明函数 initialize_camera()createCameraTask()

  • 摄像头实现:

    • 使用定义的配置初始化摄像头。
    void initialize_camera(void)
    {
    camera_config_t camera_config = {
    .pin_pwdn = PWDN_GPIO_NUM,
    .pin_reset = RESET_GPIO_NUM,
    .pin_xclk = XCLK_GPIO_NUM,
    .pin_sccb_sda = SIOD_GPIO_NUM,
    .pin_sccb_scl = SIOC_GPIO_NUM,
    .pin_d7 = Y9_GPIO_NUM,
    .pin_d6 = Y8_GPIO_NUM,
    .pin_d5 = Y7_GPIO_NUM,
    .pin_d4 = Y6_GPIO_NUM,
    .pin_d3 = Y5_GPIO_NUM,
    .pin_d2 = Y4_GPIO_NUM,
    .pin_d1 = Y3_GPIO_NUM,
    .pin_d0 = Y2_GPIO_NUM,
    .pin_vsync = VSYNC_GPIO_NUM,
    .pin_href = HREF_GPIO_NUM,
    .pin_pclk = PCLK_GPIO_NUM,

    .xclk_freq_hz = 20000000, // 图像传感器的时钟频率
    .fb_location = CAMERA_FB_IN_PSRAM, // 设置帧缓冲区存储位置
    .pixel_format = PIXFORMAT_JPEG, // 图像的像素格式:PIXFORMAT_ + YUV422|GRAYSCALE|RGB565|JPEG
    .frame_size = FRAMESIZE_UXGA, // 图像的分辨率大小:FRAMESIZE_ + QVGA|CIF|VGA|SVGA|XGA|SXGA|UXGA
    .jpeg_quality = 15, // JPEG 图像的质量,范围从 0 到 63。
    .fb_count = 2, // 使用的帧缓冲区数量。
    .grab_mode = CAMERA_GRAB_LATEST // 图像捕获模式。
    };

    esp_err_t ret = esp_camera_init(&camera_config);
    if (ret == ESP_OK)
    {
    ESP_LOGI(cameraTag, "摄像头配置成功");
    }
    else
    {
    ESP_LOGI(cameraTag, "摄像头配置失败");
    return;
    }
    }
    • 设置摄像头参数(亮度、对比度、饱和度、特殊效果、白平衡、曝光控制、AEC、AE 级别、AEC 值、增益控制、AGC 增益、增益上限、BPC、WPC、原始 GMA、LENC、水平镜像、垂直翻转、DCW、彩条)。
sensor_t *s = esp_camera_sensor_get();

s->set_brightness(s, 0); // -2 到 2
s->set_contrast(s, 0); // -2 到 2
s->set_saturation(s, 0); // -2 到 2
s->set_special_effect(s, 0); // 0 到 6 (0 - 无效果, 1 - 负片, 2 - 灰度, 3 - 红色滤镜, 4 - 绿色滤镜, 5 - 蓝色滤镜, 6 - 棕褐色滤镜)
s->set_whitebal(s, 1); // 0 = 禁用 , 1 = 启用
s->set_awb_gain(s, 1); // 0 = 禁用 , 1 = 启用
s->set_wb_mode(s, 0); // 0 到 4 - 如果启用 awb_gain (0 - 自动, 1 - 晴天, 2 - 多云, 3 - 办公室, 4 - 家庭)
s->set_exposure_ctrl(s, 1); // 0 = 禁用 , 1 = 启用
s->set_aec2(s, 0); // 0 = 禁用 , 1 = 启用
s->set_ae_level(s, 0); // -2 到 2
s->set_aec_value(s, 300); // 0 到 1200
s->set_gain_ctrl(s, 1); // 0 = 禁用 , 1 = 启用
s->set_agc_gain(s, 0); // 0 到 30
s->set_gainceiling(s, (gainceiling_t)0); // 0 到 6
s->set_bpc(s, 0); // 0 = 禁用 , 1 = 启用
s->set_wpc(s, 1); // 0 = 禁用 , 1 = 启用
s->set_raw_gma(s, 1); // 0 = 禁用 , 1 = 启用
s->set_lenc(s, 1); // 0 = 禁用 , 1 = 启用
s->set_hmirror(s, 0); // 0 = 禁用 , 1 = 启用
s->set_vflip(s, 0); // 0 = 禁用 , 1 = 启用
s->set_dcw(s, 1); // 0 = 禁用 , 1 = 启用
s->set_colorbar(s, 0); // 0 = 禁用 , 1 = 启用
  • 定义了一个函数 takePicture() 用于捕获图像并保存到 SD 卡。
void takePicture()
{
ESP_LOGI(cameraTag, "拍摄照片...");
camera_fb_t *pic = esp_camera_fb_get();

if (pic)
{
saveJpegToSdcard(pic);
}

ESP_LOGI(cameraTag, "照片拍摄完成!大小为: %zu 字节", pic->len);

esp_camera_fb_return(pic);
}
  • 创建了一个任务 cameraTakePicture_5_sec(),用于每隔 5 秒连续拍摄照片。
void cameraTakePicture_5_sec(void *pvParameters)
{
for (;;)
{
takePicture();
vTaskDelay(5000 / portTICK_PERIOD_MS);
}
}

void createCameraTask()
{
TaskHandle_t task;
xTaskCreate(
cameraTakePicture_5_sec, /* 实现任务的函数。 */
"cameraTakePicture_5_sec", /* 任务的文本名称。 */
configMINIMAL_STACK_SIZE * 4, /* 堆栈大小(以字或字节为单位)。 */
NULL, /* 传递给任务的参数。 */
tskIDLE_PRIORITY, /* 创建任务时的优先级。 */
&task /* 用于传递创建的任务句柄。 */
);
}

代码结构:

  • 头文件(camera_config.hcamera_interface.h)和实现文件(camera_interface.c)。
  • camera_config.h 文件定义了摄像头配置参数。
  • camera_interface.h 文件声明了摄像头初始化和任务创建的函数。
  • camera_interface.c 文件实现了摄像头初始化、拍摄照片和任务创建的逻辑。

SD 卡组件

  • SD 卡配置:
    定义了用于 SD 卡接口的 GPIO 引脚(MISO、MOSI、CLK、CS)。
#ifndef SDCARD_CONFIG_H
#define SDCARD_CONFIG_H

#define PIN_NUM_MISO GPIO_NUM_8
#define PIN_NUM_MOSI GPIO_NUM_9
#define PIN_NUM_CLK GPIO_NUM_7
#define PIN_NUM_CS GPIO_NUM_21

#endif //SDCARD_CONFIG_H
  • SD 卡接口:
    声明了函数 initialize_sdcard()deinitialize_sdcard()saveJpegToSdcard()
#ifndef SDCARD_INTERFACE_H
#define SDCARD_INTERFACE_H

#include "esp_camera.h"

void initialize_sdcard(void);
void deinitialize_sdcard();
void saveJpegToSdcard(camera_fb_t *);

#endif //SDCARD_INTERFACE_H
  • SD 卡实现:

    • 使用定义的配置初始化 SD 卡,并将 SD 卡挂载为 FAT 文件系统。
sdmmc_card_t *card;
sdmmc_host_t host = SDSPI_HOST_DEFAULT();
const char mount_point[] = "/sd";

void initialize_sdcard()
{
esp_err_t ret;

// 如果 format_if_mount_failed 设置为 true,当挂载失败时 SD 卡将被分区并格式化。
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
#ifdef FORMAT_IF_MOUNT_FAILED
.format_if_mount_failed = true,
#else
.format_if_mount_failed = false,
#endif // EXAMPLE_FORMAT_IF_MOUNT_FAILED
.max_files = 5,
.allocation_unit_size = 32 * 1024};

ESP_LOGI(sdcardTag, "初始化 SD 卡");

// 使用上述设置初始化 SD 卡并挂载 FAT 文件系统。
// 注意:esp_vfs_fat_sdmmc/sdspi_mount 是一体化的便利函数。
// 请检查其源代码并在开发生产应用时实现错误恢复。
ESP_LOGI(sdcardTag, "使用 SPI 外设");

// 默认情况下,SD 卡频率初始化为 SDMMC_FREQ_DEFAULT(20MHz)
// 要设置特定频率,请使用 host.max_freq_khz(SDSPI 范围为 400kHz - 20MHz)
spi_bus_config_t bus_cfg = {
.mosi_io_num = PIN_NUM_MOSI,
.miso_io_num = PIN_NUM_MISO,
.sclk_io_num = PIN_NUM_CLK,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
.max_transfer_sz = host.max_freq_khz,
};
ret = spi_bus_initialize(host.slot, &bus_cfg, SDSPI_DEFAULT_DMA);
if (ret != ESP_OK)
{
ESP_LOGE(sdcardTag, "总线初始化失败。");
return;
}

// 此操作初始化插槽,不使用卡检测(CD)和写保护(WP)信号。
// 如果您的板卡有这些信号,请修改 slot_config.gpio_cd 和 slot_config.gpio_wp。
sdspi_device_config_t slot_config = SDSPI_DEVICE_CONFIG_DEFAULT();
slot_config.gpio_cs = PIN_NUM_CS;
slot_config.host_id = host.slot;

ESP_LOGI(sdcardTag, "挂载文件系统");
ret = esp_vfs_fat_sdspi_mount(mount_point, &host, &slot_config, &mount_config, &card);

if (ret != ESP_OK)
{
if (ret == ESP_FAIL)
{
ESP_LOGE(sdcardTag, "挂载文件系统失败。"
"如果您希望格式化卡,请在 sdcard_config.h 中设置 FORMAT_IF_MOUNT_FAILED");
}
else
{
ESP_LOGE(sdcardTag, "初始化卡失败 (%s)。"
"确保 SD 卡线路上有上拉电阻。",
esp_err_to_name(ret));
}
return;
}
ESP_LOGI(sdcardTag, "文件系统已挂载");

// 卡已初始化,打印其属性
sdmmc_card_print_info(stdout, card);

// 格式化 FATFS
#ifdef FORMAT_SD_CARD
ret = esp_vfs_fat_sdcard_format(mount_point, card);
if (ret != ESP_OK)
{
ESP_LOGE(sdcardTag, "格式化 FATFS 失败 (%s)", esp_err_to_name(ret));
return;
}

if (stat(file_foo, &st) == 0)
{
ESP_LOGI(sdcardTag, "文件仍然存在");
return;
}
else
{
ESP_LOGI(sdcardTag, "文件不存在,格式化完成");
}
#endif // CONFIG_EXAMPLE_FORMAT_SD_CARD
}
  • 提供将 JPEG 图像保存到 SD 卡的功能。
uint16_t lastKnownFile = 0;

void saveJpegToSdcard(camera_fb_t *captureImage)
{
// 查找下一个可用的文件名
char filename[32];

sprintf(filename, "%s/%u_img.jpg", mount_point, lastKnownFile++);

// 创建文件并写入 JPEG 数据
FILE *fp = fopen(filename, "wb");
if (fp != NULL)
{
fwrite(captureImage->buf, 1, captureImage->len, fp);
fclose(fp);
ESP_LOGI(sdcardTag, "JPEG saved as %s", filename);
}
else
{
ESP_LOGE(sdcardTag, "Failed to create file: %s", filename);
}
}

组件结构:

  • 头文件(sdcard_config.h、sdcard_interface.h)和实现文件(sdcard_interface.c)。
  • sdcard_config.h 文件定义了 SD 卡的配置参数。
  • sdcard_interface.h 文件声明了用于 SD 卡初始化、反初始化和图像保存的函数。
  • sdcard_interface.c 文件实现了 SD 卡的初始化、反初始化和图像保存逻辑。

主函数

// main.c
#include <stdio.h>
#include "camera_interface.h"
#include "sdcard_interface.h"

void initialize_drivers()
{
initialize_sdcard();
initialize_camera();
}

void start_tasks()
{
createCameraTask();
}

void app_main(void)
{
initialize_drivers();
start_tasks();
}
  • 包含相机和 SD 卡接口的必要头文件。
  • 使用提供的函数初始化 SD 卡和相机。
  • 启动相机任务以持续拍摄照片。

输出

pir

UART 输出

I (1119) main_task: Calling app_main()
I (1123) sdcard: Initializing SD card
I (1127) sdcard: Using SPI peripheral
I (1132) sdcard: Mounting filesystem
I (1137) gpio: GPIO[21]| InputEn: 0| OutputEn: 1| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0
I (1146) sdspi_transaction: cmd=52, R1 response: command not supported
I (1195) sdspi_transaction: cmd=5, R1 response: command not supported
I (1219) sdcard: Filesystem mounted
Name: SD32G
Type: SDHC/SDXC
Speed: 20.00 MHz (limit: 20.00 MHz)
Size: 30448MB
CSD: ver=2, sector_size=512, capacity=62357504 read_bl_len=9
SSR: bus_width=1
I (1226) s3 ll_cam: DMA Channel=1
I (1230) cam_hal: cam init ok
I (1234) sccb: pin_sda 40 pin_scl 39
I (1238) sccb: sccb_i2c_port=1
I (1252) camera: Detected camera at address=0x30
I (1255) camera: Detected OV2640 camera
I (1255) camera: Camera PID=0x26 VER=0x42 MIDL=0x7f MIDH=0xa2
I (1344) cam_hal: buffer_size: 16384, half_buffer_size: 1024, node_buffer_size: 1024, node_cnt: 16, total_cnt: 375
I (1344) cam_hal: Allocating 384000 Byte frame buffer in PSRAM
I (1351) cam_hal: Allocating 384000 Byte frame buffer in PSRAM
I (1357) cam_hal: cam config ok
I (1361) ov2640: Set PLL: clk_2x: 0, clk_div: 0, pclk_auto: 0, pclk_div: 12
I (1453) camera: Camera configured successful
I (1487) main_task: Returned from app_main()
I (1487) camera: Taking picture...
I (1997) sdcard: JPEG saved as /sd/0_img.jpg
I (1997) camera: Picture taken! Its size was: 45764 bytes
I (6997) camera: Taking picture...
I (7348) sdcard: JPEG saved as /sd/1_img.jpg
I (7349) camera: Picture taken! Its size was: 51710 bytes
I (12349) camera: Taking picture...
I (12704) sdcard: JPEG saved as /sd/2_img.jpg
I (12705) camera: Picture taken! Its size was: 51853 bytes
I (17706) camera: Taking picture...
I (18054) sdcard: JPEG saved as /sd/3_img.jpg
I (18055) camera: Picture taken! Its size was: 51919 bytes
I (23055) camera: Taking picture...
I (23414) sdcard: JPEG saved as /sd/4_img.jpg
I (23414) camera: Picture taken! Its size was: 51809 bytes
I (28415) camera: Taking picture...
I (28768) sdcard: JPEG saved as /sd/5_img.jpg
I (28768) camera: Picture taken! Its size was: 51747 bytes
I (33771) camera: Taking picture...
I (34117) sdcard: JPEG saved as /sd/6_img.jpg
I (34117) camera: Picture taken! Its size was: 51968 bytes

输出图像

pir

FreeRtos 用于 Arduino IDE

FreeRtos 可以用于基于 Arduino-IDE 的 XIAO-S3 构建。它类似于 ESP-IDF 的用法,但仅运行在一个核心上,并且未针对 ESP-IDF 进行优化。

硬件设置

将 Xiao-S3 连接到 Grove - 扩展板(OLED 显示屏和 RTC),并将 Grove - 温度、湿度、压力和气体传感器(BME680) 连接到 I2C 总线。

pir

软件设置

安装 Arduino 库 pcf8563U8x8libbme680。参考 如何安装库 来为 Arduino 安装库。

#include "time.h"
#include <WiFi.h>
#include <PCF8563.h>
#include <U8x8lib.h>
#include <Wire.h>
#include "seeed_bme680.h"

#define IIC_ADDR uint8_t(0x76)
Seeed_BME680 bme680(IIC_ADDR); /* IIC 协议 */

// 用于 PCF8563 实时时钟的 I2C 通信库
PCF8563 pcf;

// OLED 显示屏库
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* clock=*/D4, /* data=*/D5, /* reset=*/U8X8_PIN_NONE); // 无复位引脚的 OLED 显示屏

// WiFi 网络凭据
const char* ssid = "REPLACE_WITH_YOUR_SSID";
const char* password = "REPLACE_WITH_YOUR_PASSWORD";

// 用于时间同步的 NTP 服务器
const char* ntpServer = "pool.ntp.org";

// 时区偏移(根据您的位置调整)
const long gmtOffset_sec = 5.5 * 60 * 60; // 小时 * 分钟 * 秒(此处为 GMT+5:30)
const int daylightOffset_sec = 0; // 假设没有夏令时

// 用于存储当前时间信息的全局变量
static Time nowTime;

// 任务函数的原型
void printDateAndTime(void* pvParameters);
void updateTime(void* pvParameters);
void ledBlink2Hz(void* pvParameters);
void oledDisplayUpdate(void* pvParameters);
void taskBME680(void* pvParameters);

// Setup 函数(启动时运行一次)
void setup() {
...
}

(代码过长,已省略部分内容,请参考原文继续翻译。)

输出

pir

串口监视器输出

09/09/24    03:17:20
T: 29.01 C P: 90.86 KPa H: 63.41 % G: 47.41 Kohms
09/09/24 03:17:21
T: 29.03 C P: 90.86 KPa H: 63.34 % G: 47.85 Kohms

Arduino FreeRTOS 与 ESP-IDF FreeRTOS 对比

功能Arduino FreeRTOSESP-IDF FreeRTOS
抽象层更高层次的抽象,更适合初学者更低层次的抽象,为有经验的用户提供更多控制
开发环境Arduino IDEESP-IDF 命令行工具
兼容性主要与基于 Arduino 的开发板兼容与更多的 ESP32 和 ESP32-S2 开发板兼容
功能基本的 RTOS 功能,包括任务创建、调度、同步全面的 RTOS 功能,包括任务创建、调度、同步、事件组、队列、互斥锁、信号量
性能由于抽象层,性能通常较低由于直接访问硬件和 RTOS API,性能更高
自定义选项自定义选项有限通过配置文件和 API 提供广泛的自定义选项
学习曲线对初学者来说更容易学习对不熟悉命令行工具和 C/C++ 的用户来说学习曲线较陡
使用场景简单的物联网项目、原型设计复杂的物联网应用、实时系统、定制硬件

故障排除

在硬件连接、软件调试或上传过程中可能会遇到一些问题。

技术支持与产品讨论

感谢您选择我们的产品!我们致力于为您提供多种支持,以确保您使用我们的产品时体验顺畅。我们提供多个交流渠道,以满足不同的偏好和需求。

Loading Comments...