Skip to main content

Grove - Anillo LED RGB (20 - WS2813 Mini)

pir

El Grove - Anillo LED RGB (20 - WS2813 Mini) es una versión mini del Anillo LED RGB Digital WS2813. El Anillo LED RGB está compuesto por LEDs de tamaño 3535 con un microcontrolador integrado dentro del LED. Los WS2813 son direccionables individualmente ya que el chip controlador está ubicado dentro del LED. Cada LED tiene una corriente constante de alimentación, por lo que el color será muy consistente incluso si cambia el voltaje.

pir

Características

  • El circuito de control y el chip RGB están integrados en un componente 3535, para formar un píxel de control externo.
  • Protección inteligente contra conexión inversa.
  • Circuito de reconfiguración de señal integrado
  • 256 niveles de gris y 16777216 colores de pantalla completa
  • Interfaz en cascada serie, la recepción y decodificación de datos depende de solo una línea de señal.
  • Transmisión de datos a velocidades de hasta 800Kbps.
  • Versión de cables de señal dual, transmisión continua de punto de ruptura de señal.

Transmisión continua de punto de ruptura de señal

pir

Mientras no se rompan dos o más LEDs adyacentes, los LEDs restantes podrán funcionar normalmente.

Especificaciones

ElementoValor
Alimentación3.3V/5V
Corriente de Reposo0.7mA/LED
Corriente Constante del Canal RGB16mA/LED
Frecuencia de Actualización2KHz
Tiempo de Reinicio>280μs
Temperatura de Funcionamiento-25~85℃
Temperatura de Almacenamiento-40~105℃

Aplicaciones típicas

  • Aplicaciones de series de tubos de protección, series de pantallas de luz puntual, series de tiras flexibles/rígidas, series de módulos.
  • Iluminación de vestuario escénico, dispositivos innovadores o cualquier otro producto electrónico.

Descripción general del hardware

Distribución de pines

pir

Detalle del hardware


WS2813B-Mini

WS2813-Mini es una fuente de luz LED de control inteligente que integra el circuito de control y el chip RGB en un paquete de componentes 3535. Su interior incluye un puerto digital inteligente de retención de datos y un circuito de amplificación de reconfiguración de señal. También incluye un oscilador interno de precisión y una parte de control de corriente constante programable de 12V, lo que logra un efecto de color altamente consistente.

Plataformas compatibles

ArduinoRaspberry Pi

pir

pir

caution

Las plataformas mencionadas anteriormente como compatibles son una indicación de la compatibilidad de software o teórica del módulo. Solo proporcionamos biblioteca de software o ejemplos de código para la plataforma Arduino en la mayoría de los casos. No es posible proporcionar biblioteca de software / código de demostración para todas las plataformas MCU posibles. Por lo tanto, los usuarios tienen que escribir su propia biblioteca de software.

Primeros Pasos

Jugar Con Arduino

Hardware

Seeeduino V4.2Base ShieldGrove - RGB LED RingGrove - Button

pir

pir

pir

pir

Obtener UNO AhoraObtener UNO AhoraObtener UNO AhoraObtener UNO Ahora
note

1. Por favor conecte el cable USB suavemente, de lo contrario puede dañar el puerto. Por favor use el cable USB con 4 cables en el interior, el cable de 2 cables no puede transferir datos. Si no está seguro sobre el cable que tiene, puede hacer clic aquí para comprar

2. Cada módulo Grove viene con un cable Grove cuando lo compra. En caso de que pierda el cable Grove, puede hacer clic aquí para comprar.

  • Paso 1. Conecte Grove - Button al puerto D2 del Grove - Base Shield.

  • Paso 2. Conecte el Grove - RGB LED Ring al puerto D6 del Grove-Base Shield.

  • Paso 3. Conecte Grove - Base Shield al Seeeduino.

caution

1. Si está usando Arduino UNO, se recomienda conectar a la fuente de alimentación DC para evitar que la ondulación máxima de voltaje Vcc exceda los 100mV.

2. Si está usando Seeeduino V4.2, no necesita conectar a la fuente de alimentación DC. Sin embargo, si cambia para alimentar Grove con 3V3 la placa madre se reiniciará cuando se encienda. Por favor note, esto no afectará el uso.

  • Paso 4. Conecte Seeeduino a la PC a través de un cable USB.

pir

warning

El intercambio en caliente no es compatible, puede que desee desconectar arduino de la fuente de alimentación antes de cualquier reemplazo o cambio.

Ahora, le demostraremos cómo ejecutar el código 'buttoncycler'. Esta es una demostración sobre cómo usar un dispositivo de entrada adicional (botón) para activar cambios en su anillo LED. Procedimiento similar si desea ejecutar otros programas, el único cambio es que necesita desconectar el botón del puerto D2 del base shield ya que no lo está usando.

Software

note

Si esta es la primera vez que trabaja con Arduino, le recomendamos encarecidamente que vea Primeros Pasos con Arduino antes de comenzar.

  • Paso 1. Descargue la biblioteca Grove-RGB_LED_Ring-20-WS2813Mini desde Github.

  • Paso 2. Consulte Cómo instalar biblioteca para instalar la biblioteca para Arduino.

  • Paso 3. Reinicie el IDE de Arduino. Abra el ejemplo, puede abrirlo de las siguientes tres maneras:

    1. Ábralo directamente en el IDE de Arduino a través de la ruta: File --> Examples -->Adafruit NeoPixel-->buttoncycler.

    pir

    1. Ábralo en su computadora haciendo clic en basic_demo.ino que puede encontrar en la carpeta XXXX\Arduino\libraries\Seeed_LED_Ring\examples\⁨buttoncycler⁩\⁨buttoncycler⁩.ino, XXXX es la ubicación donde instaló el IDE de Arduino.

    pir

    1. O, puede simplemente hacer clic en el icono

    pir

    en la esquina superior derecha del bloque de código para copiar el siguiente código en un nuevo sketch en el IDE de Arduino.

note

Debido a la limitación actual, el brillo del LED está limitado en el programa. Si insiste en ajustar el límite de brillo, puede modificar la función setBrightness(). Pero esto puede causar que la luz no funcione correctamente.

⁨buttoncycler⁩

Después de ejecutar este código, cuando presione el botón cambiará a una nueva animación de píxeles. ¡Tenga en cuenta que necesita presionar el botón una vez para iniciar la primera animación!


#include "Adafruit_NeoPixel.h"

#define BUTTON_PIN 2 // Digital IO pin connected to the button. This will be
// driven with a pull-up resistor so the switch should
// pull the pin to ground momentarily. On a high -> low
// transition the button press logic will execute.

#define PIXEL_PIN 6 // Digital IO pin connected to the NeoPixels.

#define PIXEL_COUNT 20

// Parameter 1 = number of pixels in strip, neopixel stick has 8
// Parameter 2 = pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_RGB Pixels are wired for RGB bitstream
// NEO_GRB Pixels are wired for GRB bitstream, correct for neopixel stick
// NEO_KHZ400 400 KHz bitstream (e.g. FLORA pixels)
// NEO_KHZ800 800 KHz bitstream (e.g. High Density LED strip), correct for neopixel stick
Adafruit_NeoPixel strip = Adafruit_NeoPixel(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800);

bool oldState = HIGH;
int showType = 0;

void setup() {
pinMode(BUTTON_PIN, INPUT_PULLUP);
strip.setBrightness(255);
strip.begin();
strip.show(); // Initialize all pixels to 'off'
}

void loop() {
// Get current button state.
bool newState = digitalRead(BUTTON_PIN);

// Check if state changed from high to low (button press).
if (newState == LOW && oldState == HIGH) {
// Short delay to debounce button.
delay(20);
// Check if button is still low after debounce.
newState = digitalRead(BUTTON_PIN);
if (newState == LOW) {
showType++;
if (showType > 9)
showType=0;
startShow(showType);
}
}

// Set the last button state to the old state.
oldState = newState;
}

void startShow(int i) {
switch(i){
case 0: colorWipe(strip.Color(0, 0, 0), 50); // Black/off
break;
case 1: colorWipe(strip.Color(255, 0, 0), 50); // Red
break;
case 2: colorWipe(strip.Color(0, 255, 0), 50); // Green
break;
case 3: colorWipe(strip.Color(0, 0, 255), 50); // Blue
break;
case 4: theaterChase(strip.Color(127, 127, 127), 50); // White
break;
case 5: theaterChase(strip.Color(127, 0, 0), 50); // Red
break;
case 6: theaterChase(strip.Color( 0, 0, 127), 50); // Blue
break;
case 7: rainbow(20);
break;
case 8: rainbowCycle(20);
break;
case 9: theaterChaseRainbow(50);
break;
}
}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}

void rainbow(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));
}
strip.show();
delay(wait);
}
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
}
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, c); //turn every third pixel on
}
strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel( (i+j) % 255)); //turn every third pixel on
}
strip.show();

delay(wait);

for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if(WheelPos < 85) {
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
WheelPos -= 170;
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}

!!! Atención El archivo de biblioteca puede actualizarse. Este código puede no ser aplicable al archivo de biblioteca actualizado, por lo que recomendamos que uses los primeros dos métodos.

success

Si todo va bien, podrás ver la primera animación del anillo LED, y podrás activar la nueva animación una vez que presiones el botón.

Otros Ejemplos:

Prueba de cadena RGBW


#include "Adafruit_NeoPixel.h"
#ifdef __AVR__
#include <avr/power.h>
#endif

#define PIN 6

#define NUM_LEDS 20

#define BRIGHTNESS 255

Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUM_LEDS, PIN, NEO_GRBW + NEO_KHZ800);

byte neopix_gamma[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
90, 92, 93, 95, 96, 98, 99,101,102,104,105,107,109,110,112,114,
115,117,119,120,122,124,126,127,129,131,133,135,137,138,140,142,
144,146,148,150,152,154,156,158,160,162,164,167,169,171,173,175,
177,180,182,184,186,189,191,193,196,198,200,203,205,208,210,213,
215,218,220,223,225,228,231,233,236,239,241,244,247,249,252,255 };


void setup() {
// This is for Trinket 5V 16MHz, you can remove these three lines if you are not using a Trinket
#if defined (__AVR_ATtiny85__)
if (F_CPU == 16000000) clock_prescale_set(clock_div_1);
#endif
// End of trinket special code
strip.setBrightness(BRIGHTNESS);
strip.begin();
strip.show(); // Initialize all pixels to 'off'
}

void loop() {
// Some example procedures showing how to display to the pixels:
colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color(0, 255, 0), 50); // Green
colorWipe(strip.Color(0, 0, 255), 50); // Blue
colorWipe(strip.Color(0, 0, 0, 255), 50); // White

whiteOverRainbow(20,75,5);

pulseWhite(5);

// fullWhite();
// delay(2000);

rainbowFade2White(3,3,1);


}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}

void pulseWhite(uint8_t wait) {
for(int j = 0; j < 256 ; j++){
for(uint16_t i=0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, strip.Color(0,0,0, neopix_gamma[j] ) );
}
delay(wait);
strip.show();
}

for(int j = 255; j >= 0 ; j--){
for(uint16_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, strip.Color(0,0,0, neopix_gamma[j] ) );
}
delay(wait);
strip.show();
}
}


void rainbowFade2White(uint8_t wait, int rainbowLoops, int whiteLoops) {
float fadeMax = 100.0;
int fadeVal = 0;
uint32_t wheelVal;
int redVal, greenVal, blueVal;

for(int k = 0 ; k < rainbowLoops ; k ++){

for(int j=0; j<256; j++) { // 5 cycles of all colors on wheel

for(int i=0; i< strip.numPixels(); i++) {

wheelVal = Wheel(((i * 256 / strip.numPixels()) + j) & 255);

redVal = red(wheelVal) * float(fadeVal/fadeMax);
greenVal = green(wheelVal) * float(fadeVal/fadeMax);
blueVal = blue(wheelVal) * float(fadeVal/fadeMax);

strip.setPixelColor( i, strip.Color( redVal, greenVal, blueVal ) );

}

//First loop, fade in!
if(k == 0 && fadeVal < fadeMax-1) {
fadeVal++;
}

//Last loop, fade out!
else if(k == rainbowLoops - 1 && j > 255 - fadeMax ){
fadeVal--;
}

strip.show();
delay(wait);
}

}


delay(500);


for(int k = 0 ; k < whiteLoops ; k ++){

for(int j = 0; j < 256 ; j++){

for(uint16_t i=0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, strip.Color(0,0,0, neopix_gamma[j] ) );
}
strip.show();
}

delay(2000);
for(int j = 255; j >= 0 ; j--){

for(uint16_t i=0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, strip.Color(0,0,0, neopix_gamma[j] ) );
}
strip.show();
}
}

delay(500);


}

void whiteOverRainbow(uint8_t wait, uint8_t whiteSpeed, uint8_t whiteLength ) {

if(whiteLength >= strip.numPixels()) whiteLength = strip.numPixels() - 1;

int head = whiteLength - 1;
int tail = 0;

int loops = 3;
int loopNum = 0;

static unsigned long lastTime = 0;


while(true){
for(int j=0; j<256; j++) {
for(uint16_t i=0; i<strip.numPixels(); i++) {
if((i >= tail && i <= head) || (tail > head && i >= tail) || (tail > head && i <= head) ){
strip.setPixelColor(i, strip.Color(0,0,0, 255 ) );
}
else{
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}

}

if(millis() - lastTime > whiteSpeed) {
head++;
tail++;
if(head == strip.numPixels()){
loopNum++;
}
lastTime = millis();
}

if(loopNum == loops) return;

head%=strip.numPixels();
tail%=strip.numPixels();
strip.show();
delay(wait);
}
}

}
void fullWhite() {

for(uint16_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, strip.Color(0,0,0, 255 ) );
}
strip.show();
}


// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256 * 5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
}
}

void rainbow(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));
}
strip.show();
delay(wait);
}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if(WheelPos < 85) {
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3,0);
}
if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3,0);
}
WheelPos -= 170;
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0,0);
}

uint8_t red(uint32_t c) {
return (c >> 16);
}
uint8_t green(uint32_t c) {
return (c >> 8);
}
uint8_t blue(uint32_t c) {
return (c);
}


Simple


#include "Adafruit_NeoPixel.h"
#ifdef __AVR__
#include <avr/power.h>
#endif

// Which pin on the Arduino is connected to the NeoPixels?
// On a Trinket or Gemma we suggest changing this to 1
#define PIN 6

// How many NeoPixels are attached to the Arduino?
#define NUMPIXELS 20

// When we setup the NeoPixel library, we tell it how many pixels, and which pin to use to send signals.
// Note that for older NeoPixel strips you might need to change the third parameter--see the strandtest
// example for more information on possible values.
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);

int delayval = 500; // delay for half a second

void setup() {
// This is for Trinket 5V 16MHz, you can remove these three lines if you are not using a Trinket
#if defined (__AVR_ATtiny85__)
if (F_CPU == 16000000) clock_prescale_set(clock_div_1);
#endif
// End of trinket special code
pixels.setBrightness(255);
pixels.begin(); // This initializes the NeoPixel library.
}

void loop() {

// For a set of NeoPixels the first NeoPixel is 0, second is 1, all the way up to the count of pixels minus one.

for(int i=0;i<NUMPIXELS;i++){

// pixels.Color takes RGB values, from 0,0,0 up to 255,255,255
pixels.setPixelColor(i, pixels.Color(0,150,0)); // Moderately bright green color.

pixels.show(); // This sends the updated pixel color to the hardware.

delay(delayval); // Delay for a period of time (in milliseconds).

}
}

Operador New Simple


#include "Adafruit_NeoPixel.h"
#ifdef __AVR__
#include <avr/power.h>
#endif

// Which pin on the Arduino is connected to the NeoPixels?
// On a Trinket or Gemma we suggest changing this to 1
#define PIN 6

// How many NeoPixels are attached to the Arduino?
int numPixel = 20;

// Color order, for more information see https://github.com/adafruit/Adafruit_NeoPixel/blob/master/Adafruit_NeoPixel.h
uint8_t colorOrder = 0x52; //or just use NEO_GBR

// Define new pointer for NeoPixel
Adafruit_NeoPixel *pixels;


int delayval = 500; // delay for half a second

void setup() {
// This is for Trinket 5V 16MHz, you can remove these three lines if you are not using a Trinket
#if defined (__AVR_ATtiny85__)
if (F_CPU == 16000000) clock_prescale_set(clock_div_1);
#endif
// End of trinket special code

// Here is a good place to read numPixel & colorOrder from EEPROM or what ever.
// create a new NeoPixel instance with new values
pixels = new Adafruit_NeoPixel(numPixel, PIN, colorOrder);
pixels->setBrightness(255);
pixels->begin(); // This initializes the NeoPixel library.
}

void loop() {

// For a set of NeoPixels the first NeoPixel is 0, second is 1, all the way up to the count of pixels minus one.

for(int i=0;i<numPixel;i++){

// pixels.Color takes RGB values, from 0,0,0 up to 255,255,255
pixels->setPixelColor(i, pixels->Color(0,150,0)); // Moderately bright green color.

pixels->show(); // This sends the updated pixel color to the hardware.

delay(delayval); // Delay for a period of time (in milliseconds).

}
}

Prueba de tira


#include "Adafruit_NeoPixel.h"
#ifdef __AVR__
#include <avr/power.h>
#endif

#define PIN 6

// Parameter 1 = number of pixels in strip
// Parameter 2 = Arduino pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
// NEO_RGBW Pixels are wired for RGBW bitstream (NeoPixel RGBW products)
Adafruit_NeoPixel strip = Adafruit_NeoPixel(20, PIN, NEO_GRB + NEO_KHZ800);

// IMPORTANT: To reduce NeoPixel burnout risk, add 1000 uF capacitor across
// pixel power leads, add 300 - 500 Ohm resistor on first pixel's data input
// and minimize distance between Arduino and first pixel. Avoid connecting
// on a live circuit...if you must, connect GND first.

void setup() {
// This is for Trinket 5V 16MHz, you can remove these three lines if you are not using a Trinket
#if defined (__AVR_ATtiny85__)
if (F_CPU == 16000000) clock_prescale_set(clock_div_1);
#endif
// End of trinket special code

strip.begin();
strip.setBrightness(255);
strip.show(); // Initialize all pixels to 'off'
}

void loop() {
// Some example procedures showing how to display to the pixels:
colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color(0, 255, 0), 50); // Green
colorWipe(strip.Color(0, 0, 255), 50); // Blue
//colorWipe(strip.Color(0, 0, 0, 255), 50); // White RGBW
// Send a theater pixel chase in...
theaterChase(strip.Color(127, 127, 127), 50); // White
theaterChase(strip.Color(127, 0, 0), 50); // Red
theaterChase(strip.Color(0, 0, 127), 50); // Blue

rainbow(20);
rainbowCycle(20);
theaterChaseRainbow(50);
}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}

void rainbow(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));
}
strip.show();
delay(wait);
}
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
}
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, c); //turn every third pixel on
}
strip.show();

delay(wait);

for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {
for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel( (i+j) % 255)); //turn every third pixel on
}
strip.show();

delay(wait);

for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if(WheelPos < 85) {
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
WheelPos -= 170;
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}

Visor de Esquemas en Línea

Recursos

Soporte Técnico y Discusión de Productos

¡Gracias por elegir nuestros productos! Estamos aquí para brindarle diferentes tipos de soporte para asegurar que su experiencia con nuestros productos sea lo más fluida posible. Ofrecemos varios canales de comunicación para satisfacer diferentes preferencias y necesidades.

Loading Comments...