Skip to main content

Multi-GMSL Cameras for Real-Time Object Detection and 3D Reconstruction on Jetson AGX Orin

This wiki will use the reServer Industrial J501 Carrier Board with the GMSL extension board to introduce how to deploy real-time object detection and 3D reconstruction in a multi-camera system.

NVIDIA Jetson AGX Orin ModulereServer Industrial J501 Carrier BoardreServer Industrial J501-GMSL extension board

Prerequisites

  • NVIDIA Jetson AGX Orin Module 32GB/64GB
  • Flashed with the latest JetPack 6.2 SDK (support GMSL expansion board)
  • reServer Industrial J501 Carrier Board
  • reServer Industrial J501-GMSL extension board
  • GMSL Camera

GMSL Camera Configuration

Hardware Connection

In order to obtain the input from the GMSL camera, we need to first configure the serial and deserializers' formats. Add them to the system startup script so that they can be automatically configured each time the system boots up.

Step 1. Create configuration script:

touch media-setup.sh

Step 2. Paste the following content into media-setup.sh:

#!/bin/bash
# Set Serializer & Deserializer Formats
media-ctl -d /dev/media0 --set-v4l2 '"ser_0_ch_0":1[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"ser_1_ch_1":1[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"ser_2_ch_2":1[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"ser_3_ch_3":1[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"ser_4_ch_0":1[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"ser_5_ch_1":1[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"ser_6_ch_2":1[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"ser_7_ch_3":1[fmt:YUYV8_1X16/1920x1536]'

media-ctl -d /dev/media0 --set-v4l2 '"des_0_ch_0":0[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"des_0_ch_1":0[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"des_0_ch_2":0[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"des_0_ch_3":0[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"des_1_ch_0":0[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"des_1_ch_1":0[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"des_1_ch_2":0[fmt:YUYV8_1X16/1920x1536]'
media-ctl -d /dev/media0 --set-v4l2 '"des_1_ch_3":0[fmt:YUYV8_1X16/1920x1536]'

Step 3. Add execution permissions to media-setup.sh:

chmod +x media-setup.sh

Step 4. Create a systemd service:

sudo vim /etc/systemd/system/mediactl-init.service 

# Add the following content:
[Unit]
Description=Set media-ctl formats at boot
After=multi-user.target

[Service]
Type=oneshot
ExecStart=/usr/local/bin/media-setup.sh
RemainAfterExit=true

[Install]
WantedBy=multi-user.target

Step 5. After saving and exiting, enable the service:

sudo systemctl daemon-reexec
sudo systemctl daemon-reload
sudo systemctl enable mediactl-init.service
sudo systemctl start mediactl-init.service

Step 5. Reboot the device and check if the service is running:

sudo systemctl status mediactl-init.service

#Use the following command to quickly start the camera and open a window to display the video stream:
gst-launch-1.0 v4l2src device=/dev/video0 ! xvimagesink -ev
gst-launch-1.0 v4l2src device=/dev/video1 ! xvimagesink -ev
gst-launch-1.0 v4l2src device=/dev/video2 ! xvimagesink -ev
gst-launch-1.0 v4l2src device=/dev/video3 ! xvimagesink -ev
gst-launch-1.0 v4l2src device=/dev/video4 ! xvimagesink -ev
gst-launch-1.0 v4l2src device=/dev/video5 ! xvimagesink -ev
gst-launch-1.0 v4l2src device=/dev/video6 ! xvimagesink -ev
gst-launch-1.0 v4l2src device=/dev/video7 ! xvimagesink -ev
info

Our GMSL extension board supports up to 8 camera video inputs and provides a PTP timestamp accuracy of less than 1ms to ensure the synchronization of the 8 video data streams.

Quickly deploy YOLO11 for real-time object detection of eight cameras

YOLOv11 is a real-time object detection model released by Ultralytics, offering a powerful balance of speed, accuracy, and efficiency. Designed with improved architecture and training strategies, YOLOv11 outperforms previous versions in both performance and deployment flexibility. It's particularly well-suited for edge devices, autonomous systems, and industrial AI applications, supporting tasks like detection, segmentation, and tracking with high reliability.

Install YOLO11 and run multiple cameras object detection

Step 1. Download and install the necessary packages:

note

The following packages are built for JetPack 6.2 with CUDA 12.6.

onnxruntime_gpu-1.22.0-cp310-cp310-linux_aarch64.whl

torch-2.7.0-cp310-cp310-linux_aarch64.whl

torchvision-0.22.0-cp310-cp310-linux_aarch64.whl

yolo11n.pt pretrain weights

yolo11n-seg.pt pretrain weights

yolo11n-pose.pt pretrain weights

#Install the packages using pip:
sudo apt update
sudo apt install python3-pip -y
pip install -U pip
pip install onnxruntime_gpu-1.22.0-cp310-cp310-linux_aarch64.whl
pip install torch-2.7.0-cp310-cp310-linux_aarch64.whl
pip install torchvision-0.22.0-cp310-cp310-linux_aarch64.whl
pip install ultralytics

Export the TensorRT model:

yolo export model=./models/yolo11n.pt format=engine device=0 half=True dynamic=True
yolo export model=./models/yolo11n-seg.pt format=engine device=0 half=True dynamic=True
yolo export model=./models/yolo11n-pose.pt format=engine device=0 half=True dynamic=True

Running the following Python script can quickly perform object detection on eight cameras:

detect.py
import cv2
import time
import threading
import numpy as np
import torch
from ultralytics import YOLO

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
model_detect = YOLO('./models/yolo11n.engine',task="detect")
model_seg = YOLO('./models/yolo11n-seg.engine',task="segment")
model_pose = YOLO('./models/yolo11n-pose.engine',task="pose")

camera_num = 8
frame_width, frame_height = 320, 240
frames = [np.zeros((frame_height, frame_width, 3), dtype=np.uint8) for _ in range(camera_num)]
locks = [threading.Lock() for _ in range(camera_num)]
running = True

def capture_thread(index):
cap = cv2.VideoCapture(index)
p_time = time.time()
while running:
detect_way = model_detect
ret, frame = cap.read()
frame_resized = cv2.resize(frame, (frame_width, frame_height))
if index == 4 or index == 5:
detect_way = model_seg
if index ==6 or index == 7:
detect_way = model_pose
annotated = frame_resized.copy()
results = detect_way.predict(
source=frame_resized,
device=device,
verbose=False,
stream=False,
imgsz=640,
conf=0.25
)
for r in results:
annotated = r.plot()
current_time = time.time()
fps = 1 / (current_time - p_time)
p_time = current_time
cv2.putText(annotated, f"FPS: {fps:.2f}", (10, 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1, cv2.LINE_AA)

with locks[index]:
frames[index] = annotated

cap.release()

def main():
global running

threads = []
for i in range(camera_num):
t = threading.Thread(target=capture_thread, args=(i,))
t.start()
threads.append(t)

try:
while True:
frame_copy = []
for i in range(camera_num):
with locks[i]:
frame_copy.append(frames[i].copy())
row1 = cv2.hconcat(frame_copy[:4])
row2 = cv2.hconcat(frame_copy[4:8])
result = cv2.vconcat([row1, row2])
cv2.imshow("Multi-Camera", result)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

finally:
running = False
for t in threads:
t.join()
cv2.destroyAllWindows()

if __name__ == "__main__":
main()

The J501 is equipped with the NVIDIA AGX Orin module, which boasts extremely high computing power. It can handle up to 8 cameras and load models for three different detection tasks, enabling real-time object detection.

Quickly Deploy VGGT for 3D reconstruction

VGGT is a vision-language model designed for 3D understanding and reasoning in complex environments. It combines multi-view images and language inputs to generate detailed 3D scene representations and answer spatial or semantic questions about the environment. Built upon transformer-based architectures, VGGT excels in tasks such as visual grounding, 3D object localization, and language-guided navigation, making it highly suitable for robotics and embodied AI applications.

Install VGGT environment and run 3D reconstruction with multiple cameras

git clone https://github.com/facebookresearch/vggt.git
cd vggt
pip install -r requirements.txt
pip install -r requirements_demo.txt

Run the following script to quickly perform 3D reconstruction on eight cameras:

demo.py
import os
import glob
import time
import threading
import argparse
from typing import List, Optional

import numpy as np
import torch
from tqdm.auto import tqdm
import viser
import viser.transforms as viser_tf
import cv2
from PIL import Image
from defisheye import Defisheye

try:
import onnxruntime
except ImportError:
print("onnxruntime not found. Sky segmentation may not work.")

from visual_util import segment_sky, download_file_from_url
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
from vggt.utils.geometry import closed_form_inverse_se3, unproject_depth_map_to_point_map
from vggt.utils.pose_enc import pose_encoding_to_extri_intri


def viser_wrapper(
pred_dict: dict,
port: int = 8080,
init_conf_threshold: float = 50.0, # represents percentage (e.g., 50 means filter lowest 50%)
use_point_map: bool = False,
background_mode: bool = False,
mask_sky: bool = False,
image_folder: str = None,
):
"""
Visualize predicted 3D points and camera poses with viser.

Args:
pred_dict (dict):
{
"images": (S, 3, H, W) - Input images,
"world_points": (S, H, W, 3),
"world_points_conf": (S, H, W),
"depth": (S, H, W, 1),
"depth_conf": (S, H, W),
"extrinsic": (S, 3, 4),
"intrinsic": (S, 3, 3),
}
port (int): Port number for the viser server.
init_conf_threshold (float): Initial percentage of low-confidence points to filter out.
use_point_map (bool): Whether to visualize world_points or use depth-based points.
background_mode (bool): Whether to run the server in background thread.
mask_sky (bool): Whether to apply sky segmentation to filter out sky points.
image_folder (str): Path to the folder containing input images.
"""
print(f"Starting viser server on port {port}")

server = viser.ViserServer(host="0.0.0.0", port=port)
server.gui.configure_theme(titlebar_content=None, control_layout="collapsible")

# Unpack prediction dict
images = pred_dict["images"] # (S, 3, H, W)
world_points_map = pred_dict["world_points"] # (S, H, W, 3)
conf_map = pred_dict["world_points_conf"] # (S, H, W)

depth_map = pred_dict["depth"] # (S, H, W, 1)
depth_conf = pred_dict["depth_conf"] # (S, H, W)

extrinsics_cam = pred_dict["extrinsic"] # (S, 3, 4)
intrinsics_cam = pred_dict["intrinsic"] # (S, 3, 3)

# Compute world points from depth if not using the precomputed point map
if not use_point_map:
world_points = unproject_depth_map_to_point_map(depth_map, extrinsics_cam, intrinsics_cam)
conf = depth_conf
else:
world_points = world_points_map
conf = conf_map

# Apply sky segmentation if enabled
if mask_sky and image_folder is not None:
conf = apply_sky_segmentation(conf, image_folder)

# Convert images from (S, 3, H, W) to (S, H, W, 3)
# Then flatten everything for the point cloud
colors = images.transpose(0, 2, 3, 1) # now (S, H, W, 3)
S, H, W, _ = world_points.shape

# Flatten
points = world_points.reshape(-1, 3)
colors_flat = (colors.reshape(-1, 3) * 255).astype(np.uint8)
conf_flat = conf.reshape(-1)

cam_to_world_mat = closed_form_inverse_se3(extrinsics_cam) # shape (S, 4, 4) typically
# For convenience, we store only (3,4) portion
cam_to_world = cam_to_world_mat[:, :3, :]

# Compute scene center and recenter
scene_center = np.mean(points, axis=0)
points_centered = points - scene_center
cam_to_world[..., -1] -= scene_center

# Store frame indices so we can filter by frame
frame_indices = np.repeat(np.arange(S), H * W)

# Build the viser GUI
gui_show_frames = server.gui.add_checkbox("Show Cameras", initial_value=True)

# Now the slider represents percentage of points to filter out
gui_points_conf = server.gui.add_slider(
"Confidence Percent", min=0, max=100, step=0.1, initial_value=init_conf_threshold
)

gui_frame_selector = server.gui.add_dropdown(
"Show Points from Frames", options=["All"] + [str(i) for i in range(S)], initial_value="All"
)

# Create the main point cloud handle
# Compute the threshold value as the given percentile
init_threshold_val = np.percentile(conf_flat, init_conf_threshold)
init_conf_mask = (conf_flat >= init_threshold_val) & (conf_flat > 0.1)
point_cloud = server.scene.add_point_cloud(
name="viser_pcd",
points=points_centered[init_conf_mask],
colors=colors_flat[init_conf_mask],
point_size=0.001,
point_shape="circle",
)

# We will store references to frames & frustums so we can toggle visibility
frames: List[viser.FrameHandle] = []
frustums: List[viser.CameraFrustumHandle] = []

def visualize_frames(extrinsics: np.ndarray, images_: np.ndarray) -> None:
"""
Add camera frames and frustums to the scene.
extrinsics: (S, 3, 4)
images_: (S, 3, H, W)
"""
# Clear any existing frames or frustums
for f in frames:
f.remove()
frames.clear()
for fr in frustums:
fr.remove()
frustums.clear()

# Optionally attach a callback that sets the viewpoint to the chosen camera
def attach_callback(frustum: viser.CameraFrustumHandle, frame: viser.FrameHandle) -> None:
@frustum.on_click
def _(_) -> None:
for client in server.get_clients().values():
client.camera.wxyz = frame.wxyz
client.camera.position = frame.position

img_ids = range(S)
for img_id in tqdm(img_ids):
cam2world_3x4 = extrinsics[img_id]
T_world_camera = viser_tf.SE3.from_matrix(cam2world_3x4)

# Add a small frame axis
frame_axis = server.scene.add_frame(
f"frame_{img_id}",
wxyz=T_world_camera.rotation().wxyz,
position=T_world_camera.translation(),
axes_length=0.05,
axes_radius=0.002,
origin_radius=0.002,
)
frames.append(frame_axis)

# Convert the image for the frustum
img = images_[img_id] # shape (3, H, W)
img = (img.transpose(1, 2, 0) * 255).astype(np.uint8)
h, w = img.shape[:2]

# If you want correct FOV from intrinsics, do something like:
# fx = intrinsics_cam[img_id, 0, 0]
# fov = 2 * np.arctan2(h/2, fx)
# For demonstration, we pick a simple approximate FOV:
fy = 1.1 * h
fov = 2 * np.arctan2(h / 2, fy)

# Add the frustum
frustum_cam = server.scene.add_camera_frustum(
f"frame_{img_id}/frustum", fov=fov, aspect=w / h, scale=0.05, image=img, line_width=1.0
)
frustums.append(frustum_cam)
attach_callback(frustum_cam, frame_axis)

def update_point_cloud() -> None:
"""Update the point cloud based on current GUI selections."""
# Here we compute the threshold value based on the current percentage
current_percentage = gui_points_conf.value
threshold_val = np.percentile(conf_flat, current_percentage)

print(f"Threshold absolute value: {threshold_val}, percentage: {current_percentage}%")

conf_mask = (conf_flat >= threshold_val) & (conf_flat > 1e-5)

if gui_frame_selector.value == "All":
frame_mask = np.ones_like(conf_mask, dtype=bool)
else:
selected_idx = int(gui_frame_selector.value)
frame_mask = frame_indices == selected_idx

combined_mask = conf_mask & frame_mask
point_cloud.points = points_centered[combined_mask]
point_cloud.colors = colors_flat[combined_mask]

@gui_points_conf.on_update
def _(_) -> None:
update_point_cloud()

@gui_frame_selector.on_update
def _(_) -> None:
update_point_cloud()

@gui_show_frames.on_update
def _(_) -> None:
"""Toggle visibility of camera frames and frustums."""
for f in frames:
f.visible = gui_show_frames.value
for fr in frustums:
fr.visible = gui_show_frames.value

# Add the camera frames to the scene
visualize_frames(cam_to_world, images)

print("Starting viser server...")
# If background_mode is True, spawn a daemon thread so the main thread can continue.
if background_mode:

def server_loop():
while True:
time.sleep(0.001)

thread = threading.Thread(target=server_loop, daemon=True)
thread.start()
else:
while True:
time.sleep(0.01)

return server


# Helper functions for sky segmentation


def apply_sky_segmentation(conf: np.ndarray, image_folder: str) -> np.ndarray:
"""
Apply sky segmentation to confidence scores.

Args:
conf (np.ndarray): Confidence scores with shape (S, H, W)
image_folder (str): Path to the folder containing input images

Returns:
np.ndarray: Updated confidence scores with sky regions masked out
"""
S, H, W = conf.shape
sky_masks_dir = image_folder.rstrip("/") + "_sky_masks"
os.makedirs(sky_masks_dir, exist_ok=True)

# Download skyseg.onnx if it doesn't exist
if not os.path.exists("skyseg.onnx"):
print("Downloading skyseg.onnx...")
download_file_from_url("https://huggingface.co/JianyuanWang/skyseg/resolve/main/skyseg.onnx", "skyseg.onnx")

skyseg_session = onnxruntime.InferenceSession("skyseg.onnx")
image_files = sorted(glob.glob(os.path.join(image_folder, "*")))
sky_mask_list = []

print("Generating sky masks...")
for i, image_path in enumerate(tqdm(image_files[:S])): # Limit to the number of images in the batch
image_name = os.path.basename(image_path)
mask_filepath = os.path.join(sky_masks_dir, image_name)

if os.path.exists(mask_filepath):
sky_mask = cv2.imread(mask_filepath, cv2.IMREAD_GRAYSCALE)
else:
sky_mask = segment_sky(image_path, skyseg_session, mask_filepath)

# Resize mask to match H×W if needed
if sky_mask.shape[0] != H or sky_mask.shape[1] != W:
sky_mask = cv2.resize(sky_mask, (W, H))

sky_mask_list.append(sky_mask)

# Convert list to numpy array with shape S×H×W
sky_mask_array = np.array(sky_mask_list)
# Apply sky mask to confidence scores
sky_mask_binary = (sky_mask_array > 0.1).astype(np.float32)
conf = conf * sky_mask_binary

print("Sky segmentation applied successfully")
return conf


parser = argparse.ArgumentParser(description="VGGT demo with viser for 3D visualization")
parser.add_argument(
"--image_folder", type=str, default="examples/kitchen/images/", help="Path to folder containing images"
)
parser.add_argument("--use_point_map", action="store_true", help="Use point map instead of depth-based points")
parser.add_argument("--background_mode", action="store_true", help="Run the viser server in background mode")
parser.add_argument("--port", type=int, default=8080, help="Port number for the viser server")
parser.add_argument(
"--conf_threshold", type=float, default=25.0, help="Initial percentage of low-confidence points to filter out"
)
parser.add_argument("--mask_sky", action="store_true", help="Apply sky segmentation to filter out sky points")


def main():
"""
Main function for the VGGT demo with viser for 3D visualization.

This function:
1. Loads the VGGT model
2. Processes input images from the specified folder
3. Runs inference to generate 3D points and camera poses
4. Optionally applies sky segmentation to filter out sky points
5. Visualizes the results using viser

Command-line arguments:
--image_folder: Path to folder containing input images
--use_point_map: Use point map instead of depth-based points
--background_mode: Run the viser server in background mode
--port: Port number for the viser server
--conf_threshold: Initial percentage of low-confidence points to filter out
--mask_sky: Apply sky segmentation to filter out sky points
"""
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

print("Initializing and loading VGGT model...")
# model = VGGT.from_pretrained("facebook/VGGT-1B")

model = VGGT()
_URL = "https://huggingface.co/facebook/VGGT-1B/resolve/main/model.pt"
model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))

model.eval()
model = model.to(device)
width=640
height=480
images = []
camera_num = 8
caps = [cv2.VideoCapture(i) for i in range(camera_num)]
for cap in caps:
ret, img = cap.read()
img = cv2.resize(img, (width, height))
obj = Defisheye(img)
img = obj.convert(outfile=None)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = Image.fromarray(img)
images.append(img)
images_tensor = load_and_preprocess_images(images).to(device)

images = load_and_preprocess_images(images).to(device)
print(f"Preprocessed images shape: {images.shape}")

print("Running inference...")
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16

with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
predictions = model(images)

print("Converting pose encoding to extrinsic and intrinsic matrices...")
extrinsic, intrinsic = pose_encoding_to_extri_intri(predictions["pose_enc"], images.shape[-2:])
predictions["extrinsic"] = extrinsic
predictions["intrinsic"] = intrinsic

print("Processing model outputs...")
for key in predictions.keys():
if isinstance(predictions[key], torch.Tensor):
predictions[key] = predictions[key].cpu().numpy().squeeze(0) # remove batch dimension and convert to numpy

if args.use_point_map:
print("Visualizing 3D points from point map")
else:
print("Visualizing 3D points by unprojecting depth map by cameras")

if args.mask_sky:
print("Sky segmentation enabled - will filter out sky points")

print("Starting viser visualization...")

viser_server = viser_wrapper(
predictions,
port=args.port,
init_conf_threshold=args.conf_threshold,
use_point_map=args.use_point_map,
background_mode=args.background_mode,
mask_sky=args.mask_sky,
image_folder=args.image_folder,
)
print("Visualization complete")


if __name__ == "__main__":
main()
info

run this python scipt and open the browser to visit the viser server.The loading time of the vggt model may be slightly longer. Please be patient and wait. If you are running this script on a remote server, replace localhost with the server's IP address. http://localhost:8080

note

Since the camera we are using is a fisheye camera with severe distortion, the image quality after distortion correction is poor, which will affect the final 3D modeling result. If you use a camera with less distortion and higher image quality, the effect will be improved.

Resources

Tech Support & Product Discussion

Thank you for choosing our products! We are here to provide you with different support to ensure that your experience with our products is as smooth as possible. We offer several communication channels to cater to different preferences and needs.

Loading Comments...