Skip to main content

YOLOv11 With Depth Camera on Jetson Orin For Distance Measurement

This wiki demonstrates how to use the Orbbec Gemini 2 depth camera with the reComputer J4012 (with NVIDIA® Jetson™ Orin™ NX 16GB Module), combining YOLOv11 object detection for visual target distance measurement.

Prerequisites

  • reComputer J4012 or Other products of the reCompuer series (pre-installed JetPack 5.1.3)
  • Orbbec Gemini 2 Depth Camera
  • USB Type-C data transmission cable(Connect the camera)

Hardware Connection

Install Gemini 2 Python SDK

Step 1. Clone the SDK and install dependencies:

git clone https://github.com/orbbec/pyorbbecsdk.git
sudo apt-get install python3-dev python3-venv python3-pip python3-opencv camke g++ gcc
pip install pybind11

Step 2. Install the necessary packages for building the project:

cd pyorbbecsdk
pip install -r requirements.txt

Step 3. Build the project:

mkdir build
cd build
# The version of Python here depends on your environment, but it requires Python 3.6 or above.
cmake \
-Dpybind11_DIR=`pybind11-config --cmakedir` \
-DPython3_EXECUTABLE=/usr/bin/python3.8 \
-DPython3_INCLUDE_DIR=/usr/include/python3.8 \
-DPython3_LIBRARY=/usr/lib/aarch64-linux-gnu/libpython3.8.so \
..
make -j4
make install

Step 4. Install the python wheel:

cd /path/to/pyorbbecsdk
pip install wheel
python setup.py bdist_wheel
pip install dist/*.whl

Step 5. (Optional) Generate stubs for better IntelliSense support in your IDE:

source env.sh
pip install pybind11-stubgen
pybind11-stubgen pyorbbecsdk
info

More details, please refer to here

Test Depth Camera

Through the following example, we will show you how to use the Python API of Orbbec Gemini 2 Depth Camera in combination with OpenCV for development. At the same time, it can also test whether your camera development environment is functioning properly.

test.py
from pyorbbecsdk import *
import cv2
import numpy as np

def simple_frame_to_bgr(frame):
width = frame.get_width()
height = frame.get_height()
data = np.frombuffer(frame.get_data(), dtype=np.uint8)
if data.size != width * height * 3:
return None
image = data.reshape((height, width, 3))
return cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

config = Config()
pipeline = Pipeline()

color_profile_list = pipeline.get_stream_profile_list(OBSensorType.COLOR_SENSOR)
color_profile = None
for cp in color_profile_list:
if cp.get_format() == OBFormat.RGB:
color_profile = cp
break
if color_profile is None:
print("No RGB format color stream profile found")
sys.exit(-1)

hw_d2c_profile_list = pipeline.get_d2c_depth_profile_list(color_profile, OBAlignMode.HW_MODE)
if len(hw_d2c_profile_list) == 0:
print("No D2C aligned depth stream profile found")
sys.exit(-1)
hw_d2c_profile = hw_d2c_profile_list[0]

config.enable_stream(hw_d2c_profile)
config.enable_stream(color_profile)
config.set_align_mode(OBAlignMode.HW_MODE)
pipeline.enable_frame_sync()
pipeline.start(config)

try:
while True:
frames = pipeline.wait_for_frames(100)
if frames is None:
continue
color_frame = frames.get_color_frame()
depth_frame = frames.get_depth_frame()
if color_frame is None or depth_frame is None:
continue
color_image = simple_frame_to_bgr(color_frame)
height = depth_frame.get_height()
width = depth_frame.get_width()
depth_data = np.frombuffer(depth_frame.get_data(), dtype=np.uint16).reshape((height, width))
min_depth = 150
max_depth = 2000
depth_clipped = np.clip(depth_data, min_depth, max_depth)
depth_inverted = max_depth - depth_clipped
depth_normalized = cv2.normalize(depth_inverted, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
depth_vis = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_MAGMA)
if color_image.shape[:2] != depth_vis.shape[:2]:
color_image = cv2.resize(color_image, (depth_vis.shape[1], depth_vis.shape[0]), interpolation=cv2.INTER_NEAREST)
concat_image = cv2.hconcat([color_image, depth_vis])
scale = 0.3
concat_image = cv2.resize(concat_image, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
cv2.imshow("Output", concat_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
pipeline.stop()
cv2.destroyAllWindows()
If you see a window with the RGB image on the left and the depth image on the right, your camera is working correctly.

Deploy YOLOv11 with TensorRT

YOLOv11 provides high-performance real-time object detection. The following steps show how to deploy YOLOv11 using TensorRT for fast inference on Jetson platforms.

Step 1. Clone the YOLOv11 TensorRT repository:

git clone https://github.com/wang-xinyu/tensorrtx.git
cd tensorrtx/yolo11

Step 2. Download the YOLOv11n pre-trained model:

wget -O yolo11n.pt https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt

Step 3. Generate the .wts file:

python gen_wts.py -w yolo11n.pt -o yolo11n.wts -t detect

Step 4. Build the project:

mkdir build
cd build
cmake ..
make -j4

Step 5. Generate TensorRT engine:

./yolo11_det -s yolo11n.wts yolo11n.engine n

If successful, you will find the yolo11n.engine file in the build directory.

Step 6. Install pycuda for Python API inference:

pip install pycuda
info

The deployment of yolo11 in this repository only supports TensorRT-8.x (for Jetson platforms with Jetpack 6 or above,requires significant code modifications!)

Distance Calculation

Prior knowledge

The depth value from the camera represents the Z-axis distance (forward from the camera), not the actual geometric distance.

To compute the true 3D Euclidean distance between two points, you need:

  • Pixel coordinates (u, v) of the target

  • Depth value d at (u, v)

  • Depth camera intrinsics: fx, fy, cx, cy

The three-dimensional coordinates of a certain point in the camera coordinate system can be calculated using the following formula:

Z = d
X = (u - cx) * Z / fx
Y = (v - cy) * Z / fy

The Euclidean distance D between two points((X1,Y1,Z1) and (X2,Y2,Z2)) in space can be calculated using the following formula:

D = sqrt((X1-X2)^2 + (Y1-Y2)^2 + (Z1-Z2)^2)

Get camera parameters example:

get_camera_parameters.py
from pyorbbecsdk import *
pipeline = Pipeline()
profile_list = pipeline.get_stream_profile_list(OBSensorType.COLOR_SENSOR)
color_profile = profile_list.get_default_video_stream_profile()
profile_list = pipeline.get_stream_profile_list(OBSensorType.DEPTH_SENSOR)
depth_profile = profile_list.get_default_video_stream_profile()
extrinsic = depth_profile.get_extrinsic_to(color_profile)
print("extrinsic {}".format(extrinsic))
depth_intrinsics = depth_profile.get_intrinsic()
print("depth_intrinsics {}".format(depth_intrinsics))
depth_distortion = depth_profile.get_distortion()
print("depth_distortion {}".format(depth_distortion))
color_intrinsics = color_profile.get_intrinsic()
print("color_intrinsics {}".format(color_intrinsics))
color_distortion = color_profile.get_distortion()
print("color_distortion {}".format(color_distortion))

Get the depth camera's intrinsics:

fx = 616.707275
fy = 616.707275
cx = 648.300171
cy = 404.478149

Real-Time Object Detection and Distance Measurement

The following script demonstrates how to use YOLOv11 with the Orbbec Gemini 2 depth camera to detect objects (e.g., a cup and a mouse) and measure the 3D distance between them in real time:
distance_measurement.py

"""
An example that uses TensorRT's Python api to make inferences.
"""
import ctypes
import os
import shutil
import random
import sys
import threading
import time
import cv2
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
from pyorbbecsdk import *
if not hasattr(np, 'bool'):
np.bool = np.bool_


CONF_THRESH = 0.5
IOU_THRESHOLD = 0.4
POSE_NUM = 17 * 3
DET_NUM = 6
SEG_NUM = 32
OBB_NUM = 1


def get_img_path_batches(batch_size, img_dir):
ret = []
batch = []
for root, dirs, files in os.walk(img_dir):
for name in files:
if len(batch) == batch_size:
ret.append(batch)
batch = []
batch.append(os.path.join(root, name))
if len(batch) > 0:
ret.append(batch)
return ret


def plot_one_box(x, img, distance_list,depth_img=None,depth_data=None,color=None, label=None, line_thickness=None):
"""
description: Plots one bounding box on image img,
this function comes from YoLo11 project.
param:
x: a box likes [x1,y1,x2,y2]
img: a opencv image object
color: color to draw rectangle, such as (0,255,0)
label: str
line_thickness: int
return:
no return

"""
tl = (
line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1
) # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)

# Camera intrinsic parameters
fx = 616.707275
fy = 616.707275
cx0 = 648.300171
cy0 = 404.478149

if label:
cx = int((x[0] + x[2]) / 2)
cy = int((x[1] + x[3]) / 2)
cv2.circle(img, (cx, cy), 5, (0, 0, 255), -1)
cv2.circle(depth_img, (cx, cy), 5, (0, 0, 255), -1)

depth_clust = [(cx, cy),(cx - 1 ,cy),(cx - 1 ,cy - 1),(cx,cy -1),(cx + 1,cy -1),(cx+1,cy),(cx+1,cy+1),(cx,cy+1),(cx - 1,cy + 1)]
for point in depth_clust:
cx, cy = point
if 0 <= cx < depth_data.shape[1] and 0 <= cy < depth_data.shape[0]:
cv2.circle(depth_img, (cx, cy), 5, (0, 255, 0), -1)
else:
continue
# Convert depth value to meters, assuming the original data unit is millimeters
depth_mm = depth_data[cy, cx]
depth_m = depth_mm / 1000.0
# Calculate 3D coordinates (X, Y, Z) in meters
X = (cx - cx0) * depth_m / fx
Y = (cy - cy0) * depth_m / fy
Z = depth_m
distance_list.append([X, Y, Z])

tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(
img,
label,
(c1[0], c1[1] - 2),
0,
tl / 3,
[225, 255, 255],
thickness=tf,
lineType=cv2.LINE_AA,
)
return distance_list


class YoLo11TRT(object):
"""
description: A YOLO11 class that warps TensorRT ops, preprocess and postprocess ops.
"""

def __init__(self, engine_file_path):
# Create a Context on this device,
self.ctx = cuda.Device(0).make_context()
stream = cuda.Stream()
TRT_LOGGER = trt.Logger(trt.Logger.INFO)
runtime = trt.Runtime(TRT_LOGGER)

# Deserialize the engine from file
with open(engine_file_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()

host_inputs = []
cuda_inputs = []
host_outputs = []
cuda_outputs = []
bindings = []

for binding in engine:
print('bingding:', binding, engine.get_binding_shape(binding))
self.batch_size = engine.get_binding_shape(binding)[0]
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
cuda_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(cuda_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
self.input_w = engine.get_binding_shape(binding)[-1]
self.input_h = engine.get_binding_shape(binding)[-2]
host_inputs.append(host_mem)
cuda_inputs.append(cuda_mem)
else:
host_outputs.append(host_mem)
cuda_outputs.append(cuda_mem)

# Store
self.stream = stream
self.context = context
self.engine = engine
self.host_inputs = host_inputs
self.cuda_inputs = cuda_inputs
self.host_outputs = host_outputs
self.cuda_outputs = cuda_outputs
self.bindings = bindings
self.det_output_length = host_outputs[0].shape[0]

def infer(self, raw_image_generator,depth_img=None,depth_data=None):
threading.Thread.__init__(self)
# Make self the active context, pushing it on top of the context stack.
self.ctx.push()
# Restore
stream = self.stream
context = self.context
host_inputs = self.host_inputs
cuda_inputs = self.cuda_inputs
host_outputs = self.host_outputs
cuda_outputs = self.cuda_outputs
bindings = self.bindings
# Do image preprocess
batch_image_raw = []
batch_origin_h = []
batch_origin_w = []
batch_input_image = np.empty(shape=[self.batch_size, 3, self.input_h, self.input_w])
for i, image_raw in enumerate(raw_image_generator):
input_image, image_raw, origin_h, origin_w = self.preprocess_image(image_raw)
batch_image_raw.append(image_raw)
batch_origin_h.append(origin_h)
batch_origin_w.append(origin_w)
np.copyto(batch_input_image[i], input_image)
batch_input_image = np.ascontiguousarray(batch_input_image)

# Copy input image to host buffer
np.copyto(host_inputs[0], batch_input_image.ravel())
start = time.time()
# Transfer input data to the GPU.
cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream)
# Run inference.
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream)
# Synchronize the stream
stream.synchronize()
end = time.time()
# Remove any context from the top of the context stack, deactivating it.
self.ctx.pop()
# Here we use the first row of output in that batch_size = 1
output = host_outputs[0]
# Do postprocess
for i in range(self.batch_size):
result_boxes, result_scores, result_classid = self.post_process(
output[i * self.det_output_length: (i + 1) * self.det_output_length], batch_origin_h[i],
batch_origin_w[i]
)
detected_classes = {categories[int(cid)] for cid in result_classid}
if "cup" in detected_classes and "mouse" in detected_classes:
cup_pos = []
mouse_pos = []
# Draw rectangles and labels on the original image
for j in range(len(result_boxes)):
box = result_boxes[j]
if categories[int(result_classid[j])] == "cup" or categories[int(result_classid[j])] == "mouse":
if categories[int(result_classid[j])] == "cup":
cup_pos = plot_one_box(
box,
batch_image_raw[i],
distance_list = cup_pos,
depth_img=depth_img,
depth_data=depth_data,
label="{}:{:.2f}".format(
categories[int(result_classid[j])], result_scores[j],
),
)
else:
mouse_pos = plot_one_box(
box,
batch_image_raw[i],
distance_list = mouse_pos,
depth_img=depth_img,
depth_data=depth_data,
label="{}:{:.2f}".format(
categories[int(result_classid[j])], result_scores[j],
),
)

# If both person and cup are detected, calculate the distance
if len(mouse_pos) > 0 and len(cup_pos) > 0 and (len(mouse_pos)==len(cup_pos)):
dis_cluster = []
for x in range(len(mouse_pos)):
# for y in range(len(cup_pos)):
pr = np.sqrt(
(abs(mouse_pos[x][0]) - abs(cup_pos[0][0])) ** 2 +
(abs(mouse_pos[x][1]) - abs(cup_pos[0][1])) ** 2 +
(abs(mouse_pos[x][2]) - abs(cup_pos[0][2])) ** 2
)
dis_cluster.append(pr)
pr = np.mean(dis_cluster)
print(f"Distance between cup and mouse: {pr*1000:.3f} mm")

cv2.putText(
depth_img,
f"Distance: {pr*1000:.3f} mm",
(100, 120),
cv2.FONT_HERSHEY_SIMPLEX,
5,
(0, 255, 0),
8,
cv2.LINE_AA,
)
# print("infer time:", end - start)

return batch_image_raw,depth_img,end - start

def destroy(self):
# Remove any context from the top of the context stack, qqqqdeactivating it.
self.ctx.pop()

def get_raw_image(self, image_path_batch):
"""
description: Read an image from image path
"""
for img_path in image_path_batch:
yield cv2.imread(img_path)

def get_raw_image_zeros(self, image_path_batch=None):
"""
description: Ready data for warmup
"""
for _ in range(self.batch_size):
yield np.zeros([self.input_h, self.input_w, 3], dtype=np.uint8)

def preprocess_image(self, raw_bgr_image):
"""
description: Convert BGR image to RGB,
resize and pad it to target size, normalize to [0,1],
transform to NCHW format.
param:
input_image_path: str, image path
return:
image: the processed image
image_raw: the original image
h: original height
w: original width
"""
image_raw = raw_bgr_image
h, w, c = image_raw.shape
image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)
# Calculate widht and height and paddings
r_w = self.input_w / w
r_h = self.input_h / h
if r_h > r_w:
tw = self.input_w
th = int(r_w * h)
tx1 = tx2 = 0
ty1 = int((self.input_h - th) / 2)
ty2 = self.input_h - th - ty1
else:
tw = int(r_h * w)
th = self.input_h
tx1 = int((self.input_w - tw) / 2)
tx2 = self.input_w - tw - tx1
ty1 = ty2 = 0
# Resize the image with long side while maintaining ratio
image = cv2.resize(image, (tw, th))
# Pad the short side with (128,128,128)
image = cv2.copyMakeBorder(
image, ty1, ty2, tx1, tx2, cv2.BORDER_CONSTANT, None, (128, 128, 128)
)
image = image.astype(np.float32)
# Normalize to [0,1]
image /= 255.0
# HWC to CHW format:
image = np.transpose(image, [2, 0, 1])
# CHW to NCHW format
image = np.expand_dims(image, axis=0)
# Convert the image to row-major order, also known as "C order":
image = np.ascontiguousarray(image)
return image, image_raw, h, w

def xywh2xyxy(self, origin_h, origin_w, x):
"""
description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
param:
origin_h: height of original image
origin_w: width of original image
x: A boxes numpy, each row is a box [center_x, center_y, w, h]
return:
y: A boxes numpy, each row is a box [x1, y1, x2, y2]
"""
y = np.zeros_like(x)
r_w = self.input_w / origin_w
r_h = self.input_h / origin_h
if r_h > r_w:
y[:, 0] = x[:, 0]
y[:, 2] = x[:, 2]
y[:, 1] = x[:, 1] - (self.input_h - r_w * origin_h) / 2
y[:, 3] = x[:, 3] - (self.input_h - r_w * origin_h) / 2
y /= r_w
else:
y[:, 0] = x[:, 0] - (self.input_w - r_h * origin_w) / 2
y[:, 2] = x[:, 2] - (self.input_w - r_h * origin_w) / 2
y[:, 1] = x[:, 1]
y[:, 3] = x[:, 3]
y /= r_h

return y

def post_process(self, output, origin_h, origin_w):
"""
description: postprocess the prediction
param:
output: A numpy likes [num_boxes,cx,cy,w,h,conf,cls_id, cx,cy,w,h,conf,cls_id, ...]
origin_h: height of original image
origin_w: width of original image
return:
result_boxes: finally boxes, a boxes numpy, each row is a box [x1, y1, x2, y2]
result_scores: finally scores, a numpy, each element is the score correspoing to box
result_classid: finally classid, a numpy, each element is the classid correspoing to box
"""
num_values_per_detection = DET_NUM + SEG_NUM + POSE_NUM + OBB_NUM
# Get the num of boxes detected
num = int(output[0])
# Reshape to a two dimentional ndarray
# pred = np.reshape(output[1:], (-1, 38))[:num, :]
pred = np.reshape(output[1:], (-1, num_values_per_detection))[:num, :]
# Do nms
boxes = self.non_max_suppression(pred, origin_h, origin_w, conf_thres=CONF_THRESH, nms_thres=IOU_THRESHOLD)
result_boxes = boxes[:, :4] if len(boxes) else np.array([])
result_scores = boxes[:, 4] if len(boxes) else np.array([])
result_classid = boxes[:, 5] if len(boxes) else np.array([])
return result_boxes, result_scores, result_classid

def bbox_iou(self, box1, box2, x1y1x2y2=True):
"""
description: compute the IoU of two bounding boxes
param:
box1: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h))
box2: A box coordinate (can be (x1, y1, x2, y2) or (x, y, w, h))
x1y1x2y2: select the coordinate format
return:
iou: computed iou
"""
if not x1y1x2y2:
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
else:
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]

# Get the coordinates of the intersection rectangle
inter_rect_x1 = np.maximum(b1_x1, b2_x1)
inter_rect_y1 = np.maximum(b1_y1, b2_y1)
inter_rect_x2 = np.minimum(b1_x2, b2_x2)
inter_rect_y2 = np.minimum(b1_y2, b2_y2)
# Intersection area
inter_area = (np.clip(inter_rect_x2 - inter_rect_x1 + 1, 0, None)
* np.clip(inter_rect_y2 - inter_rect_y1 + 1, 0, None))
# Union Area
b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)

iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)

return iou

def non_max_suppression(self, prediction, origin_h, origin_w, conf_thres=0.5, nms_thres=0.4):
"""
description: Removes detections with lower object confidence score than 'conf_thres' and performs
Non-Maximum Suppression to further filter detections.
param:
prediction: detections, (x1, y1, x2, y2, conf, cls_id)
origin_h: original image height
origin_w: original image width
conf_thres: a confidence threshold to filter detections
nms_thres: a iou threshold to filter detections
return:
boxes: output after nms with the shape (x1, y1, x2, y2, conf, cls_id)
"""
# Get the boxes that score > CONF_THRESH
boxes = prediction[prediction[:, 4] >= conf_thres]
# Trandform bbox from [center_x, center_y, w, h] to [x1, y1, x2, y2]
boxes[:, :4] = self.xywh2xyxy(origin_h, origin_w, boxes[:, :4])
# clip the coordinates
boxes[:, 0] = np.clip(boxes[:, 0], 0, origin_w - 1)
boxes[:, 2] = np.clip(boxes[:, 2], 0, origin_w - 1)
boxes[:, 1] = np.clip(boxes[:, 1], 0, origin_h - 1)
boxes[:, 3] = np.clip(boxes[:, 3], 0, origin_h - 1)
# Object confidence
confs = boxes[:, 4]
# Sort by the confs
boxes = boxes[np.argsort(-confs)]
# Perform non-maximum suppression
keep_boxes = []
while boxes.shape[0]:
large_overlap = self.bbox_iou(np.expand_dims(boxes[0, :4], 0), boxes[:, :4]) > nms_thres
label_match = boxes[0, -1] == boxes[:, -1]
# Indices of boxes with lower confidence scores, large IOUs and matching labels
invalid = large_overlap & label_match
keep_boxes += [boxes[0]]
boxes = boxes[~invalid]
boxes = np.stack(keep_boxes, 0) if len(keep_boxes) else np.array([])
return boxes


class inferThread(threading.Thread):
def __init__(self, yolo11_wrapper, image_path_batch):
threading.Thread.__init__(self)
self.yolo11_wrapper = yolo11_wrapper
self.image_path_batch = image_path_batch

def run(self):
batch_image_raw, use_time = self.yolo11_wrapper.infer(self.yolo11_wrapper.get_raw_image(self.image_path_batch))
for i, img_path in enumerate(self.image_path_batch):
parent, filename = os.path.split(img_path)
save_name = os.path.join('output', filename)
# Save image
cv2.imwrite(save_name, batch_image_raw[i])
print('input->{}, time->{:.2f}ms, saving into output/'.format(self.image_path_batch, use_time * 1000))


class warmUpThread(threading.Thread):
def __init__(self, yolo11_wrapper):
threading.Thread.__init__(self)
self.yolo11_wrapper = yolo11_wrapper

def run(self):
batch_image_raw, use_time = self.yolo11_wrapper.infer(self.yolo11_wrapper.get_raw_image_zeros())
print('warm_up->{}, time->{:.2f}ms'.format(batch_image_raw[0].shape, use_time * 1000))


def simple_frame_to_bgr(frame):
width = frame.get_width()
height = frame.get_height()
data = np.frombuffer(frame.get_data(), dtype=np.uint8)
if data.size != width * height * 3:
return None
image = data.reshape((height, width, 3))
return cv2.cvtColor(image, cv2.COLOR_RGB2BGR)



if __name__ == "__main__":
# load custom plugin and engine
PLUGIN_LIBRARY = "build/libmyplugins.so"
engine_file_path = "./build/yolo11n.engine"

if len(sys.argv) > 1:
engine_file_path = sys.argv[1]
if len(sys.argv) > 2:
PLUGIN_LIBRARY = sys.argv[2]

ctypes.CDLL(PLUGIN_LIBRARY)

categories = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat",
"traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
"hair drier", "toothbrush"]

yolo11_wrapper = YoLo11TRT(engine_file_path)


# Create Config and Pipeline objects
config = Config()
pipeline = Pipeline()

# Get color stream profile
color_profile_list = pipeline.get_stream_profile_list(OBSensorType.COLOR_SENSOR)
color_profile = None
for i in range(len(color_profile_list)):
cp = color_profile_list[i]
if cp.get_format() == OBFormat.RGB:
color_profile = cp
break
if color_profile is None:
print("RGB format color stream profile not found")
sys.exit(-1)

# Get D2C-aligned depth profile
hw_d2c_profile_list = pipeline.get_d2c_depth_profile_list(color_profile, OBAlignMode.HW_MODE)
if len(hw_d2c_profile_list) == 0:
print("D2C-aligned depth stream profile not found")
sys.exit(-1)
hw_d2c_profile = hw_d2c_profile_list[0]
print("hw_d2c_profile:", hw_d2c_profile)

# Enable D2C-aligned depth and color streams
config.enable_stream(hw_d2c_profile)
config.enable_stream(color_profile)
config.set_align_mode(OBAlignMode.HW_MODE)

# Enable frame sync (optional, recommended)
pipeline.enable_frame_sync()
# Start pipeline
pipeline.start(config)

prev_time = time.time()
frame_count = 0
fps = 0

total_frames = 0
total_time = 0
try:
while True:
frames = pipeline.wait_for_frames(100)
if frames is None:
continue
color_frame = frames.get_color_frame()
if color_frame is None:
continue
depth_frame = frames.get_depth_frame()
if color_frame is None or depth_frame is None:
continue
# 彩色帧转为BGR图像
color_image = simple_frame_to_bgr(color_frame)


start_time = time.time() # Record the start time of each frame

# Convert depth frame to numpy array
height = depth_frame.get_height()
width = depth_frame.get_width()
depth_data = np.frombuffer(depth_frame.get_data(), dtype=np.uint16).reshape((height, width))
depth_data = cv2.GaussianBlur(depth_data, (5, 5), 0)

min_depth = 150
max_depth = 2000

# 1. First, clip the depth to the specified range
depth_clipped = np.clip(depth_data, min_depth, max_depth)

# 2. Invert the depth: near → large, far → small
depth_inverted = max_depth - depth_clipped # The closer, the larger the value

# 3. Normalize to 0 ~ 255
depth_normalized = cv2.normalize(depth_inverted, None, 0, 255, cv2.NORM_MINMAX)
depth_normalized = depth_normalized.astype(np.uint8) - 30

# 4. Apply a smooth and natural colormap (recommended: INFERNO or MAGMA)
depth_vis = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_MAGMA)


# Adjust the depth image size to match the color image
if color_image.shape[:2] != depth_vis.shape[:2]:
color_image = cv2.resize(color_image, (depth_vis.shape[1], depth_vis.shape[0]), interpolation=cv2.INTER_NEAREST)

# Inference requires a batch, construct the batch
batch_imgs = [color_image] * yolo11_wrapper.batch_size
batch_image_raw, depth_img,use_time = yolo11_wrapper.infer(batch_imgs,depth_vis,depth_data)

# Only display the first image (only one frame from camera/video stream)
show_img = batch_image_raw[0]

# FPS calculation
frame_count += 1
curr_time = time.time()
if curr_time - prev_time >= 1.0:
fps = frame_count / (curr_time - prev_time)
prev_time = curr_time
frame_count = 0

# Horizontal concatenation
concat_image = cv2.hconcat([show_img, depth_img])
# Display FPS
cv2.putText(concat_image, f"FPS: {fps:.2f}", (30, 80), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 255, 255), 5)
scale = 0.3
concat_image = cv2.resize(concat_image, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
cv2.imshow("Output", concat_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break

# Count total frames and total time
total_frames += 1
total_time += (time.time() - start_time) # Count the total process time

finally:
# cap.release()
cv2.destroyAllWindows()
yolo11_wrapper.destroy()
if total_time > 0:
avg_fps = total_frames / total_time
print(f"Average FPS: {avg_fps:.2f}")

The script will display the detection results and the measured distance between two specified objects (e.g., cup and mouse) in real time.The left side of the window shows the RGB image with detection boxes.The right side shows the depth map and distance.In the video, you can see that the measurement error is generally within one centimeter:
note
Since Orbbec Gemini 2 is based on the structured light/dual-view scheme, on edges, inclined surfaces, and reflective objects, the depth data is prone to fluctuate, often with errors of several centimeters. When you take pictures of the same object from different angles, the texture deformation of the infrared projection leads to matching failure and ultimately results in a larger depth deviation. At the same time, the intensity of ambient light also affects the quality of the depth map. According to your environment, we provide the following adjustment suggestions:
  • Filtering out abnormal depth maps and performing noise reduction filtering on the depth maps.

  • Try to position the target in the center of the image to reduce the influence of image edge distortion.

  • Perform the operation of taking the average of multiple depth images to reduce the influence of abnormal light (which will reduce real-time performance).

Resources

Tech Support & Product Discussion

Thank you for choosing Seeed Studio products! For technical support and product discussion, please use the following channels:

Loading Comments...