Skip to main content


SSCMA uses the configuration processing system provided by OpenMMLab - MMEngine with a modular and inheritable design that provides users a unified configuration access interface for various tests and validations of different neural networks.

Directory Structure

The configuration files used by SSCMA are located in the configs directory, which are used for training different models under different tasks. And we have created many subfolders according to different tasks, and in each subfolder, different training pipeline parameters of multiple models are stored.

├── _base_
│ ├── datasets
│ │ └──
│ ├──
│ ├──
│ ├──
│ └── schedules
│ ├──
│ ├──
│ └──
├── classification
│ ├──
│ ├──
│ └──
├── fomo
│ ├──
│ ├──
│ └──
├── pfld
│ ├──
│ ├──
│ ├──
│ └──
└── swift_yolo
└── <Other Tasks...>

The task folder named _base_ is an inheritance object for other tasks. For more details about configuration file inheritance, please refer to MMEngine - Configuration File Inheritance.

Configuration Structure

Take the configuration file as an example, we introduce different fields in this configuration file according to the different functional modules.

Important Parameters

When changing the training configuration, it is usually necessary to modify the following parameters. For example, the height and width factors are usually for image size. So we recommend defining these parameters separately in the configuration file.

height=96       # Input image height
width=96 # Input image width
batch_size=16 # Batch size of a single GPU during validation
workers=4 # Worker to pre-fetch data for each single GPU during validation
epoches=300 # Maximum training epochs: 300 epochs
lr=0.001 # Learn rate

Model Config

In the configuration file of the FOMO model, we use model to set up detection algorithm components, include neural network components such as backbone, neck, etc. Part of model configuration as below:

num_classes=2                                   # Number of class
type='Fomo', # The name of detector
out_indices=(2, )), # The config of backbone
type='Fomo_Head', # The config of head
input_channels=16, # The input channels, this is consistent with the input channels of neck
num_classes=num_classes, # Number of classes for classification
middle_channels=[96, 32], # The output channels for head conv
act_cfg='ReLU6', # The config of activation function
loss_cls=dict(type='BCEWithLogitsLoss', # This loss combines a Sigmoid layer and the BCELoss in one single class
loss_bg=dict(type='BCEWithLogitsLoss', reduction='none'),
cls_weight=40) # Parameter for pos_weight

Dataset and Evaluator Config

Dataset and data pipeline need to be set to build the dataloader. Due to the complexity of this part, we use intermediate variables to simplify the writing of dataloader configs. More complex data argumentation methods can be found in sscma/datasets/pipelines path.

We will demonstrate here the training and testing pipeline for FOMO, which uses the Custom COCO_MASK Dataset:

dataset_type='FomoDatasets'   # Dataset type, this will be used to define the dataset
data_root='' # Root path of data
train_pipeline=[ # Training data loading pipeline
dict(type='RandomResizedCrop', height=height, width=width, scale=(0.90, 1.1),
p=1), # RandomResizedCrop augmentation in albumentation for fomo
dict(type='Rotate', limit=20), # Rotate transform with limit degree 20
dict(type='RandomBrightnessContrast', # RandomBrightnessContrast augmentation in albumentation
brightness_limit=0.2, # Factor range for changing brightness
contrast_limit=0.2, # Factor range for changing contrast
p=0.5), # Probability of applying the transform
dict(type='HorizontalFlip', p=0.5), # Flip the input horizontally around the y-axis
test_pipeline=[dict(type='Resize', height=height, width=width,
p=1)] # Resize the input to the given height and width

data=dict(samples_per_gpu=batch_size, # Batch size of a single GPU during training
workers_per_gpu=workers, # Worker to pre-fetch data for each single GPU during training
train_dataloader=dict(collate=True), # Flag of merging a list of samples to form a mini-batch
img_prefix='train2017', # Path of annotation file and prefix of image path
test_mode=True, # Enable test mode of the dataset to avoid filtering annotations or images

Evaluators are used to compute the metrics of the trained model on the validation and testing datasets. The config of evaluators consists of one or a list of metric configs:

evaluation=dict(interval=1, metric=['mAP'], fomo=True) # Validation metric for evaluate mAP

Optimizer Config

optimizer=dict(type='Adam', lr=lr, weight_decay=0.0005)         # Adam gradient descent optimizer with base learning rate and weight decay
optimizer_config=dict(grad_clip=dict(max_norm=35, norm_type=2)) # Config used to build the optimizer hook

For more details on the application of Hook, please refer to MMEngine - Hook.

Config File Inheritance

The directory config/_base_ contains the default configuration file, and the configuration file are composed of the components in _base_, which is called the primitive.

For easy testing, we recommend that users inherit the existing configuration files. For example, the training configuration file of a FOMO model with _base_='. /_base_/', and then based on the inherited file, we modify the necessary fields in the configuration file.

checkpoint_config=dict(interval=5) # Config to set the checkpoint hook
log_config=dict( # Config to register logger hook
interval=150, # Interval to print the log
dict(type='TextLoggerHook', ndigits=4), # TXT logger
dict(type='TensorboardLoggerHook', ndigits=4) # Tensorboard logger
]) # The logger used to record the training process
runner=dict(type='EpochBasedRunner', # Type of runner to use (i.e. IterBasedRunner or EpochBasedRunner)
max_epochs=epochs) # Runner that runs the workflow in total max_epochs. For IterBasedRunner use `max_iters`
dist_params=dict(backend='nccl') # Parameters to setup distributed training, the port can also be set
log_level = 'INFO' # The level of logging
load_from = None # Load models as a pre-trained model from a given path, this will not resume training
resume_from = None # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved
workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once. The workflow trains the model by 300 epochs according to the total_epochs
opencv_num_threads = 1 # Disable OpenCV multi-threads to save memory
work_dir = './work_dirs' # Directory to save the model checkpoints and logs for the current experiments

Parameterized Configuration

When submitting a job using tools/ or tools/ from SSCMA, you can specify --cfg-options to temporarily overwrite the configuration.


You can specify configuration options in the order of the dict keys in the original configuration and update the dict chain of configuration keys. For example, --cfg-options data_root='. /dataset/coco' change the data root directory of the dataset.


Loading Comments...